scholarly journals Probiotics analysis by high-throughput sequencing revealed multiple mismatches at bacteria genus level with the declared and actual composition

LWT ◽  
2022 ◽  
pp. 113055
Author(s):  
Mikhail Syromyatnikov ◽  
Ekaterina Nesterova ◽  
Maria Gladkikh ◽  
Vasily Popov
Author(s):  
E.V. Korneenko ◽  
◽  
А.E. Samoilov ◽  
I.V. Artyushin ◽  
M.V. Safonova ◽  
...  

In our study we analyzed viral RNA in bat fecal samples from Moscow region (Zvenigorod district) collected in 2015. To detect various virus families and genera in bat fecal samples we used PCR amplification of viral genome fragments, followed by high-throughput sequencing. Blastn search of unassembled reads revealed the presence of viruses from families Astroviridae, Coronaviridae and Herpesviridae. Assembly using SPAdes 3.14 yields contigs of length 460–530 b.p. which correspond to genome fragments of Coronaviridae and Astroviridae. The taxonomy of coronaviruses has been determined to the genus level. We also showed that one bat can be a reservoir of several virus genuses. Thus, the bats in the Moscow region were confirmed as reservoir hosts for potentially zoonotic viruses.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yan Zhao ◽  
Kun Li ◽  
Houqiang Luo ◽  
Longchuan Duan ◽  
Caixia Wei ◽  
...  

Birds are an important source of fecal contamination in environment. Many of diseases are spread through water contamination caused by poultry droppings. A study was conducted to compare the intestinal microbial structure of Shaoxing ducks with and without water. Thirty 1-day-old Shaoxing ducks (Qingke No. 3) were randomly divided into two groups; one group had free access to water (CC), while the other one was restricted from water (CT). After 8 months of breeding, caecal samples of 10 birds from each group were obtained on ice for high-throughput sequencing. A total of 1507978 valid sequences were examined and clustered into 1815 operational taxonomic units (OTUs). At phylum level, Firmicutes (41.37%), Bacteroidetes (33.26%), Proteobacteria (13.67%), and Actinobacteria (8.26%) were found to dominate the microbial community in CC birds, while Firmicutes (53.62%), Bacteroidetes (33.06%), and Actinobacteria (11.13%) were uncovered to be the prime phyla in CT ducks. At genus level, Bacteroides (25.02%), Escherichia-Shigella (11.02%), Peptococcus (7.73%) and Parabacteroides (5.86%) were revealed to be the mainly genera in the CC group ducks, while Bacteroides (18.11%), Erysipelatoclostridium (10.94%), Ruminococcaceae_unclassified (10.43%), Lachnospiraceae_unclassified (5.26%), Coriobacteriales_unclassified (5.89%), and Faecalibacterium (4.2%) were detected to staple the microbial flora in the CT birds. One phylum and 13 genera were found to have the significant difference between the two bird groups (p<0.05). At phylum level, Proteobacteria in CT ducks were found to be obviously lower than ducks in CC birds (p<0.05). At genus level, Escherichia-Shigella (p<0.05) and Peptococcus (p<0.05) were found to be notably lower in CT birds, while Erysipelatoclostridium (p<0.05), Ruminococcaceae_unclassified (p<0.01), Coriobacteriales_unclassified (p<0.05), Faecalibacterium (p<0.01), Atopobiaceae_unclassified (p<0.01), Alistipes (p<0.05), Eggerthellaceae_unclassified (p<0.05), Prevotella_7 (<0.05), Rikenellaceae_RC9_gut_group (p<0.05), Prevotellaceae_uncultured (p<0.05), and Shuttleworthia (p<0.05) were observed to be prominently higher in CT ducks. In conclusion, the present study revealed the effects of keeping ducks away from swimming with obvious changes in the microbial community. Though higher microbial richness was found in the ducks without swimming, more pathogenic genera including Eggerthella, Erysipelatoclostridium, Alistipes, Prevotella_7, and Shuttleworthia; zoonotic genera including Eggerthella and Shuttleworthia; inflammatory genus Alistipes; anti-inflammatory Faecalibacterium genus; and tumor genus Rikenellaceae were examined in these ducks. The CT ducks also showed significant changes at genera level regarding the metabolism (Peptococcus, Ruminococcaceae, and Coriobacteriales).


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Mariona Pinart ◽  
Andreas Dötsch ◽  
Kristina Schlicht ◽  
Matthias Laudes ◽  
Jildau Bouwman ◽  
...  

Whether the gut microbiome in obesity is characterized by lower diversity and altered composition at the phylum or genus level may be more accurately investigated using high-throughput sequencing technologies. We conducted a systematic review in PubMed and Embase including 32 cross-sectional studies assessing the gut microbiome composition by high-throughput sequencing in obese and non-obese adults. A significantly lower alpha diversity (Shannon index) in obese versus non-obese adults was observed in nine out of 22 studies, and meta-analysis of seven studies revealed a non-significant mean difference (−0.06, 95% CI −0.24, 0.12, I2 = 81%). At the phylum level, significantly more Firmicutes and fewer Bacteroidetes in obese versus non-obese adults were observed in six out of seventeen, and in four out of eighteen studies, respectively. Meta-analyses of six studies revealed significantly higher Firmicutes (5.50, 95% 0.27, 10.73, I2 = 81%) and non-significantly lower Bacteroidetes (−4.79, 95% CI −10.77, 1.20, I2 = 86%). At the genus level, lower relative proportions of Bifidobacterium and Eggerthella and higher Acidaminococcus, Anaerococcus, Catenibacterium, Dialister, Dorea, Escherichia-Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococcus, and Sutterella were found in obese versus non-obese adults. Although a proportion of studies found lower diversity and differences in gut microbiome composition in obese versus non-obese adults, the observed heterogeneity across studies precludes clear answers.


2020 ◽  
Author(s):  
E.V. Korneenko ◽  
◽  
А.E. Samoilov ◽  
I.V. Artyushin ◽  
M.V. Safonova ◽  
...  

In our study we analyzed viral RNA in bat fecal samples from Moscow region (Zvenigorod district) collected in 2015. To detect various virus families and genera in bat fecal samples we used PCR amplification of viral genome fragments, followed by high-throughput sequencing. Blastn search of unassembled reads revealed the presence of viruses from families Astroviridae, Coronaviridae and Herpesviridae. Assembly using SPAdes 3.14 yields contigs of length 460–530 b.p. which correspond to genome fragments of Coronaviridae and Astroviridae. The taxonomy of coronaviruses has been determined to the genus level. We also showed that one bat can be a reservoir of several virus genuses. Thus, the bats in the Moscow region were confirmed as reservoir hosts for potentially zoonotic viruses


Sign in / Sign up

Export Citation Format

Share Document