Do artificial structures cause shifts in epifaunal communities and trophic guilds across different spatial scales?

2020 ◽  
Vol 158 ◽  
pp. 104998
Author(s):  
F. Sedano ◽  
J.M. Tierno de Figueroa ◽  
C. Navarro-Barranco ◽  
E. Ortega ◽  
J.M. Guerra-García ◽  
...  
2020 ◽  
Author(s):  
Peter Lawrence ◽  
Ally Evans ◽  
Paul Brooks ◽  
Tim D'Urban Jackson ◽  
Stuart Jenkins ◽  
...  

<p>Coastal ecosystems are threatened by habitat loss and anthropogenic “smoothing” as hard engineering approaches to sea defence, such as sea-walls, rock armouring, and offshore reefs, become common place. These artificial structures use homogenous materials (e.g. concrete or quarried rock) and as a result, lack the surface heterogeneity of natural rocky shoreline known to play a key role in niche creation and higher species diversity. Despite significant investment and research into soft engineering and ecologically sensitive approaches to coastal development, there are still knowledge gaps, particularly in relation to how patterns that are observed in nature can be utilised to improve artificial shores.</p><p>Given the technical improvements and significant reductions in cost within the portable remote sensing field (structure from motion and laser scanning), we are now able to plug gaps in our understanding of how habitat heterogeneity can influence overall site diversity. These improvements represent an excellent opportunity to improve our understanding of the spatial scales and complexity of habitats that species occur within and ultimately improve the ecological design of engineered structures in areas experiencing “smoothing” and habitat loss.</p><p>In this talk, I will highlight how advances in remote sensing techniques can be applied to context-specific ecological problems, such as low diversity and loss of rare species within marine infrastructure. I will describe our approach to combining large-scale ecological, 3D geophysical and engineering research to design statistically-derived ecologically-inspired solutions to smooth artificial surfaces. We created experimental concrete enhancement units and deployed them at a number of coastal locations. I will present preliminary ecological results, provide a workflow of unit development and statistical approaches, and finally discuss how these advances may improve future ecological intervention and design options.</p>


2013 ◽  
Vol 11 (4) ◽  
pp. 891-904 ◽  
Author(s):  
Rosilene Luciana Delariva ◽  
Norma Segatti Hahn ◽  
Elaine Antoniassi Luiz Kashiwaqui

This study examined the diet and trophic structure of the fish fauna, over temporal and spatial scales, as affected by the impoundment of the Iguaçu River in the region of Salto Caxias, Paraná State, Brazil. Sampling was conducted before (March 1997 - February 1998) and after the impoundment (March 1999 - February 2000), at four sampling sites. The stomach contents were analyzed by the volumetric method. The species could be organized in 10 trophic guilds: algivores, carcinophages, detritivores, herbivores, aquatic insectivores, terrestrial insectivores, invertivores, omnivores, piscivores, and planktivores; the first and last guilds were represented only in the post-impoundment period. Similarity patterns and feeding changes were summarized by a non-metric Multi-dimensional Scaling (nMDS) analysis and statistically tested by a Permutational multivariate analysis of variance (PERMANOVA). Most species showed feeding changes, except for the piscivores and detritivores. These changes were related to the temporal factor (impoundment phases), such as reduced intake of benthic organisms and allochthonous food, which were usually replaced by resources from the reservoir itself (algae, microcrustaceans, and fish), simplifying the food spectrum of the fish fauna. A different indicator of food resources (IndVal) corroborated these changes in the feeding of the species. The proportions of the trophic guilds evaluated based on the catch per unit of effort (CPUE) and tested by ANOSIM were significantly different before and after the impoundment. Herbivores and piscivores were the guilds that contributed (SIMPER) to these differences, especially the high increase in biomass of the piscivore guild after the impoundment. Variations in the abundance of trophic guilds were more directly related to changes in the feeding habits of the fish fauna than to increases in the number and biomass of the species that constitute these guilds.


2012 ◽  
Vol 69 (4) ◽  
pp. 682-693 ◽  
Author(s):  
Gwladys I. Lambert ◽  
Simon Jennings ◽  
Jan Geert Hiddink ◽  
Niels T. Hintzen ◽  
Hilmar Hinz ◽  
...  

Abstract Lambert, G. I., Hiddink, J. G., Hintzen, N. T., Hinz, H., Kaiser, M. J., Murray, L. G., and Jennings, S. 2012. Implications of using alternative methods of vessel monitoring system (VMS) data analysis to describe fishing activities and impacts. – ICES Journal of Marine Science, 69: 682–693. Understanding the spatial distribution and intensity of fishing activity is a prerequisite for estimating fishing impacts on seabed biota and habitats. Vessel monitoring system data provide information on fishing activity at large spatial scales. However, successive position records can be too infrequent to describe the complex movements fishing vessels make. High-frequency position data were collected to evaluate how polling frequency and the method of analysis influenced the estimates of fishing impact on the seabed and associated epifaunal communities. Comparisons of known positions with predictions from track interpolation revealed that the performance of interpolation depended on fleet behaviour. Descriptions and indicators of fishing intensity were influenced significantly by the analytical methods (track reconstruction, density of position records) and grid-cell resolution used for the analysis. These factors can lead to an underestimation of fishing impact on epifaunal communities. It is necessary to correct for such errors to quantify the effects of fishing on various ecosystem components and hence to inform ecosystem-based management. Polling at intervals of 30 min would provide a desirable compromise between achieving precise estimates of fishing impacts on the seabed and minimizing the cost of data collection and handling.


Author(s):  
J. R. Michael

X-ray microanalysis in the analytical electron microscope (AEM) refers to a technique by which chemical composition can be determined on spatial scales of less than 10 nm. There are many factors that influence the quality of x-ray microanalysis. The minimum probe size with sufficient current for microanalysis that can be generated determines the ultimate spatial resolution of each individual microanalysis. However, it is also necessary to collect efficiently the x-rays generated. Modern high brightness field emission gun equipped AEMs can now generate probes that are less than 1 nm in diameter with high probe currents. Improving the x-ray collection solid angle of the solid state energy dispersive spectrometer (EDS) results in more efficient collection of x-ray generated by the interaction of the electron probe with the specimen, thus reducing the minimum detectability limit. The combination of decreased interaction volume due to smaller electron probe size and the increased collection efficiency due to larger solid angle of x-ray collection should enhance our ability to study interfacial segregation.


2014 ◽  
Vol 11 (1) ◽  
pp. 90-100
Author(s):  
Yigit Aydede

The present study intends to reveal spatial regularities between non-immigrant and immigrant numbers in two different ways. First, it questions the existence of those regularities when spatial scales get finer. Second, it uses pooled data over four population censuses covering the period from 1991 to 2006, which enabled us to apply appropriate techniques to remove those unobserved fixed effects so that the estimations would accurately identify the linkage between local immigrant and non-immigrant numbers. The results provide evidence about the existence of negative spatial regularities between non-immigrant and immigrant numbers in Canada at national scale.


2019 ◽  
Vol 612 ◽  
pp. 29-42 ◽  
Author(s):  
NR Evensen ◽  
C Doropoulos ◽  
KM Morrow ◽  
CA Motti ◽  
PJ Mumby

Sign in / Sign up

Export Citation Format

Share Document