Estimating irreducible water saturation and permeability of sandstones from nuclear magnetic resonance measurements by fractal analysis

2019 ◽  
Vol 110 ◽  
pp. 565-574 ◽  
Author(s):  
Ling Peng ◽  
Chi Zhang ◽  
Huolin Ma ◽  
Heping Pan
Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. D11-D21 ◽  
Author(s):  
Xinmin Ge ◽  
Yiren Fan ◽  
Xuejuan Zhu ◽  
Yiguo Chen ◽  
Runze Li

The cutoff value of nuclear magnetic resonance (NMR) transversal relaxation time [Formula: see text] is vital for pore structure characterization, permeability prediction, and irreducible water saturation calculation. Conventional default values often lead to inaccurate results for rocks with complex pore structure. Based on NMR experiments and multifractal theory, we have developed an effective statistical method to predict [Formula: see text] cutoff values without other petrophysical information. The method is based on multifractal theory to analyze the NMR [Formula: see text] spectrum with the assumption that the [Formula: see text] spectrum is an indicator of pore size distribution. Multifractal parameters, such as multifractal dimension, singularity strength, and mass exponent, are calculated to investigate the multifractal behavior of [Formula: see text] spectrum via NMR experiments and a dyadic scaling-down algorithm. To obtain the optimal [Formula: see text] cutoff value, the rotation speed and time of centrifugation are enlarged increasingly to optimal centrifugal state. A predicating model for [Formula: see text] cutoff value based on multiple linear regressions of multifractal parameters was proposed after studying the influential factors. On the basis of the multifractal analysis of NMR [Formula: see text] spectrum, a reasonable predication model for [Formula: see text] cutoff value was rendered. Upon testing, the predicted results were highly consistent with the experimental results.


2011 ◽  
Vol 346 ◽  
pp. 852-857
Author(s):  
Yu Zhou ◽  
He Kun Guo ◽  
Guo Qi Wei

Irreducible water saturation is one of the fundamental parameters in characterizing reservoir formations, and determined as the key factor in reserve calculation and fluid type identification. Measurement on whole core must be taken to analyze irreducible water saturation of volcanic rocks as a result of lithological diversity, porous structure complexity and strong heterogeneity. A new testing method for whole core is proposed by combining Nuclear Magnetic Resonance and centrifugal tests. This new method measures irreducible water saturation using T2 spectrum of whole core demarcated by T2 cutoff measured on 25mm or 38mm diameter core samples which drilled from the whole core. The new method solved the size and shape restricts, long test cycles and viscous fingering defects of conventional methods. According to the comparison with conventional method, the results of the new method coincide well on homogeneous rocks, and are more accuracy with fractured samples.


AAPG Bulletin ◽  
2018 ◽  
Vol 102 (02) ◽  
pp. 175-193 ◽  
Author(s):  
Jin Lai ◽  
Guiwen Wang ◽  
Zhuoying Fan ◽  
Zhenglong Zhou ◽  
Jing Chen ◽  
...  

2021 ◽  
Vol 73 (08) ◽  
pp. 46-47
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202683, “Marrying the Static and Dynamic Worlds: Enhancing Saturation and Permeability Interpretation Using a Combination of Multifrequency Dielectric, Nuclear Magnetic Resonance, and Wireline Formation Testers,” by Hassan Mostafa, Ghassan Al-Jefri, SPE, and Tania Felix Menchaca, SPE, ADNOC, et al., prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Accurate water saturation evaluation and permeability profiling are crucial factors in determining volumetrics and productivity of multiple, stacked carbonate reservoirs offshore Abu Dhabi and derisking reservoir management. The case study presented in the complete paper illustrates how the integration of static measurements, such as dielectric dispersion and nuclear magnetic resonance (NMR) with dynamic measurements improves understanding of reservoir properties and supports more-accurate reservoir evaluation. Sampling and downhole fluid analysis (DFA) performed by wireline formation tester (WFT) identifies the fluid and rock properties in various flow units. Field Background and Challenges Optimal field development requires accurate estimations of water saturation and permeability. In this greenfield, the hydrocarbon is generally oil (medium to light) with very low asphaltene content. Overall, the reservoir quality is controlled by a combination of depositional environment, sequence stratigraphy, and diagenesis. Some reservoirs have good porosity, but reconciliation of log-based water saturation results with well-test results has been an issue. The objective in this case study was to drill a pilot hole for data gathering in a poorly characterized field location. Phase I included drilling a hole with a 55° deviation to cover all reservoirs for data gathering only, with the openhole reservoir section then being plugged and abandoned. Phase II of the plan was to sidetrack and complete the well as dual water-injector boreholes. In the reservoir section of the pilot borehole, a variety of logs was acquired for evaluation, including both logging-while-drilling and wireline measurements. While drilling, triple- combination data were acquired, consisting of gamma ray, resistivity, and nuclear logs (density neutron) along with resistivity images. The wireline-logging program was carried out in two stages to avoid differential sticking. In the first stage, the WFT was used to acquire 10 pressure points, seven points in the first reservoir and three points in the second. Two DFA stations were also recorded in Zone 1 to confirm whether the oil/water contact was deeper than expected. Logging was conducted using a high-tension wireline cable, which facilitates quicker accessibility to the openhole sections. In the second stage, multiple wireline runs were performed for the formation evaluation of the complete section, followed by the WFT pressure and fluid-sampling run on the drillpipe conveyance. Another critical challenge was to obtain accurate water saturations in the heterogeneous, minor, thin reservoirs, which are bounded by dense layers above and below and cause shoulder-bed effects. The third challenge in this well was to obtain an accurate, continuous, and representative permeability profile for the multiple reservoirs. WFT mini-drillstem test (DST) stations along with NMR logs were used to address this important requirement.


Sign in / Sign up

Export Citation Format

Share Document