Depositional environment, diagenetic evolution, and their impact on the reservoir quality of the carboniferous KT-Ⅱ carbonate in the zhanazhol reservoir, Pre-Caspian Basin, Kazakhstan

2020 ◽  
Vol 117 ◽  
pp. 104411
Author(s):  
Xiao'er Zhu ◽  
Zhenkui Jin ◽  
Ting Liang ◽  
Shuo Yi ◽  
Kai Wei ◽  
...  
GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 107-138
Author(s):  
Karl Ramseyer ◽  
Joachim E. Amthor ◽  
Christoph Spötl ◽  
Jos M.J. Terken ◽  
Albert Matter ◽  
...  

ABSTRACT Sandstones of the Early Paleozoic Miqrat Formation and Barik Sandstone Member (Haima Supergroup) are the most prolific gas/condensate containing units in the northern part of the Interior Oman Sedimentary Basin (IOSB). The reservoir-quality of these sandstones, buried to depths exceeding 5 km, is critically related to the depositional environment, burial-related diagenetic reactions, the timing of liquid hydrocarbon charge and the replacement of liquid hydrocarbon by gas/condensate. The depositional environment of the sandstones controls the net-sand distribution which results in poorer reservoir properties northwards parallel to the axis of the Ghaba Salt Basin. The sandy delta deposits of the Barik Sandstone Member have a complex diagenetic history, with early dolomite cementation, followed by compaction, chlorite formation, hydrocarbon charge, quartz and anhydrite precipitation and the formation of pore-filling and pore-lining bitumen. In the Miqrat Formation sandstone, which is comprised of inland sabkha deposits, similar authigenic minerals occur, but with higher abundances of dolomite and anhydrite, and less quartz cement. The deduced pore water evolution from deposition to recent, in both the Miqrat Formation and the Barik Sandstone Member, reflects an early addition of saline continental waters and hydrocarbon-burial related mineral reactions with the likely influx of lower-saline waters during the obduction of the Oman Mountains. Four structural provinces are recognized in the IOSB based on regional differences in the subsidence/uplift history: the Eastern Flank, the Ghaba and Fahud Salt Basins and the Mabrouk-Makarem High. In the Fahud Salt Basin, biodegradation of an early oil charge during Late Paleozoic uplift resulted in reservoir-quality degradation by bitumen clogging of the pore space. On the Eastern Flank and the Mabrouk-Makarem High, however, the early oil bypassed the area. In contrast, post-Carboniferous liquid hydrocarbons were trapped in the Mabrouk-Makarem High, whereas on the Eastern Flank surface water infiltration and loss of hydrocarbons or biodegradation to pore occluding bitumen occurred. In the Ghaba Salt Basin, post-Carboniferous hydrocarbon charge induced a redox reaction to form porosity/permeability preserving chlorite in the reservoirs. The liquid hydrocarbons were replaced since the obduction of the Oman Mountains by gas/condensate which prevented the deep parts (>5,000 m) of the Ghaba Salt Basin from pore occluding pyrobitumen and thus deterioration of the reservoir quality.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 446
Author(s):  
Dinfa Vincent Barshep ◽  
Richard Henry Worden

The Upper Jurassic, shallow marine Corallian sandstones of the Weald Basin, UK, are significant onshore reservoirs due to their future potential for carbon capture and storage (CCS) and hydrogen storage. These reservoir rocks, buried to no deeper than 1700 m before uplift to 850 to 900 m at the present time, also provide an opportunity to study the pivotal role of shallow marine sandstone eodiagenesis. With little evidence of compaction, these rocks show low to moderate porosity for their relatively shallow burial depths. Their porosity ranges from 0.8 to 30% with an average of 12.6% and permeability range from 0.01 to 887 mD with an average of 31 mD. The Corallian sandstones of the Weald Basin are relatively poorly studied; consequently, there is a paucity of data on their reservoir quality which limits any ability to predict porosity and permeability away from wells. This study presents a potential first in the examination of diagenetic controls of reservoir quality of the Corallian sandstones, of the Weald Basin’s Palmers Wood and Bletchingley oil fields, using a combination of core analysis, sedimentary core logs, petrography, wireline analysis, SEM-EDS analysis and geochemical analysis to understand the extent of diagenetic evolution of the sandstones and its effects on reservoir quality. The analyses show a dominant quartz arenite lithology with minor feldspars, bioclasts, Fe-ooids and extra-basinal lithic grains. We conclude that little compactional porosity-loss occurred with cementation being the main process that caused porosity-loss. Early calcite cement, from neomorphism of contemporaneously deposited bioclasts, represents the majority of the early cement, which subsequently prevented mechanical compaction. Calcite cement is also interpreted to have formed during burial from decarboxylation-derived CO2 during source rock maturation. Other cements include the Fe-clay berthierine, apatite, pyrite, dolomite, siderite, quartz, illite and kaolinite. Reservoir quality in the Corallian sandstones show no significant depositional textural controls; it was reduced by dominant calcite cementation, locally preserved by berthierine grain coats that inhibited quartz cement and enhanced by detrital grain dissolution as well as cement dissolution. Reservoir quality in the Corallian sandstones can therefore be predicted by considering abundance of calcite cement from bioclasts, organically derived CO2 and Fe-clay coats.


2018 ◽  
Vol 36 (4) ◽  
pp. 850-871 ◽  
Author(s):  
Anqing Chen ◽  
Shenglin Xu ◽  
Shuai Yang ◽  
Hongde Chen ◽  
Zhongtang Su ◽  
...  

Recent natural gas discoveries indicate that non-karstification-dominated reservoirs exist in the intracratonic Ordos Basin. This study examines the sedimentological and geochemical characteristics needed to clarify the depositional model and diagenetic evolution process of this newly discovered reservoir type. The depositional environment of the dolomite reservoir can be characterized as a tidal flat that grew from the Central Paleo-uplift to the eastern depression by cyclic progradation on an epeiric platform. A tidal flat sequence can extend laterally as a progradational wedge in each cycle of sea level fluctuation. The sheet-shaped peritidal shoal facies associations patched on the wedge represent potential dolomite reservoirs and can be recognized by the presence of doloarenite that has been altered into a vaguely relict grained-texture by diagenesis. Although continuing destructive diagenesis has led to reservoir densification, burial dolomitization and burial dissolution with facies selectivity have tended to occur in peritidal shoal facies associations, thus improving the quality of the dolomite reservoirs. These models provide new insights for targeting deep dolomite hydrocarbon reservoirs in intracratonic basins.


2018 ◽  
Vol 97 ◽  
pp. 672-689 ◽  
Author(s):  
Bui Viet Dung ◽  
Hoang Anh Tuan ◽  
Nguyen Van Kieu ◽  
Ha Quang Man ◽  
Nguyen Thi Thanh Thuy ◽  
...  

1990 ◽  
Vol 12 ◽  
pp. 1-42
Author(s):  
Niels Stentoft

The carbonate unit Ca-2 found in the Løgumkloster-l well is located on the northern marginal carbonate platform of the North German Zechstein Basin. The ea. 43 m thick sequence includes former oncoidal/algal muds which were deposited in a relatively quiet lagoonal back-barrier environment, and ooidal carbonate sands, deposited in a rather agitated shoal environment. The carbonate sediments of Ca-2 have been subjected to a complex sequence of diagenetic events. However, the present porosity/ permeability, and thus the reservoir quality of the rocks, is primarily linked to four events: two leaching phases, a phase of chemical compaction, and a late anhydritization. The first phase of leaching created mouldic porosity. The last phase of leaching was important as it resulted in a widening of the preexisting pores and fractures and thereby facilitated percolation of sulphate solutions causing the late anhydritization, which considerably reduced the porosity/ permeability of the rock. The present pore geometry of the rock is complex. In the oolitic intervals the intra- and inter-ooidal porosity types are the most widespread. In the oncolitic/algal intervals intra- and inter-oncoidal porosity and vuggy porosity are often combined with intercrystalline porosity. The corresponding Ca-2 rock in the Brøns-l well, situated ca. 20 km northwest of the Løgumkloster- l well, was subjected to the same post-depositional evolution. Comparison with the diagenesis of the upper part of the Ca-la formation in the Aabenraa-1 well and the Ca-1 formation of the Varmes-1 well also shows close similarity in the diagenetic evolution.


Sign in / Sign up

Export Citation Format

Share Document