Sedimentary environments and mechanism of organic matter enrichment of dark shales with low TOC in the Mesoproterozoic Cuizhuang Formation of the Ordos Basin: Evidence from petrology, organic geochemistry, and major and trace elements

2020 ◽  
Vol 122 ◽  
pp. 104695
Author(s):  
Xing Pan ◽  
Zhenliang Wang ◽  
Qiongyao Li ◽  
Jia Gao ◽  
Liwen Zhu ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2694
Author(s):  
Guanqun Yang ◽  
Wenhui Huang ◽  
Jianhua Zhong ◽  
Ningliang Sun

The detailed characteristics and formation mechanisms of organic-rich clasts (ORCs) in the Upper Paleozoic tight sandstone in the northeastern margin of the Ordos Basin were analyzed through 818-m-long drilling cores and logging data from 28 wells. In general, compared with soft-sediment clasts documented in other sedimentary environments, organic-rich clasts in coal-bearing tight sandstone have not been adequately investigated in the literature. ORCs are widely developed in various sedimentary environments of coal-bearing sandstone, including fluvial channels, crevasse splays, tidal channels, sand flats, and subaqueous debris flow deposits. In addition to being controlled by the water flow energy and transportation processes, the fragmentation degree and morphology of ORCs are also related to their content of higher plants organic matter. The change in water flow energy during transportation makes the ORCs show obvious mechanical depositional differentiation. Four main types of ORC can be recognized in the deposits: diamictic organic-rich clasts, floating organic-rich clasts, loaded lamellar organic-rich clasts, and thin interlayer organic-rich clasts. The relationship between energy variation and ORCs deposition continuity is rarely studied so far. Based on the different handling processes under the control of water flow energy changes, we propose two ORCs formation mechanisms: the long-term altering of continuous water flow and the short-term water flow acting triggered by sudden events.


2020 ◽  
Author(s):  
Camille Banc ◽  
Mathieu Gautier ◽  
Blanc Denise ◽  
Lupsea-Toader Maria ◽  
Marsac Rémi ◽  
...  

<p>In the treatment of raw domestic wastewaters in vertical flow constructed wetlands (VFCW), a sludge layer is formed at the surface of the first-stage filters by the retention of wastewater’s suspended solids. The deposits constituting this layer is now known to accumulate and degrade a large variety of contaminants during regular conditions of operation. The potential release of the contaminants from the sludge deposits under disturbed conditions or during off-site sludge reuse is therefore a major concern. This study investigated the influence of organic colloids on the mobilization of major and trace elements bound to VFCW surface sludge deposits.   </p><p>Although the role of organic and/or mineral colloidal carrier phases in the transport of elements in natural systems has been extensively studied, little is known in contrast on the production of colloidal carrier phases from anthropic materials and media such as the sludge deposits considered here.</p><p>The acid/base neutralizing capacity (environmental assessment procedure ANC/BNC) (CEN/TS 14429) was carried out to assess the release at different pHs. Samples of sludge deposits were contacted with solutions in a wide pH range and the suspensions filtered through 0.45 µm acetate cellulose filters were subsequently analyzed. In addition, the suspensions were also treated by ultrafiltration using successively membranes of decreasing pore size (30 kDa, 10 kDa and 3 kDa). The leached organic molecules were thereby divided into three groups: (i) large colloids (30 kDa-0.45 µm), (ii) small colloids (10 kDa-3 kDa) and (iii) truly dissolved fraction (< 3 kda). The permeates were analyzed for major and trace elements and organic particles. UV-vis spectra were also recorded to evaluate organic matter aromaticity.  </p><p>Results showed that the molecular weight of the organic matter released was pH-dependent. Under very acidic conditions, the release of dissolved and poorly aromatic organic matter was mostly observed. At natural pH, close to neutrality, the sludge deposits released mostly large organic colloids. At higher pHs, the release of larger organic colloids was observed associated with an increase in the aromaticity of organic molecules.</p><p>The major and trace mineral elements released were found in the different fractions analyzed, depending on  their affinity with the organic colloidal carrier phases described previously. A first group of elements (As, P, B, V, Na, K) were mostly found in solution, and therefore poorly affected by colloidal transport regardless of pH conditions.  A second group (Co, Cu, Ni, Cd, Zn) was found to be relatively uniformly distributed in the fractions associated with the large and small colloids as well as in the dissolved fraction. A third group (Cr, Ba, Mn, Ca, Li, Mg, Sr) was mostly associated to large organic and/or mineral colloids.  </p><p>The results obtained in this study are a contribution to a better description of colloidal production and the release of associated elements and contaminants from VFCW sludge deposits. This is a key issue in the assessment of environmental risks related to the operation of the treatment plants or the reuse of the sludge material.</p>


AAPG Bulletin ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1273-1293 ◽  
Author(s):  
Andrew D. Hanson ◽  
Bradley D. Ritts ◽  
J. Michael Moldowan

Sign in / Sign up

Export Citation Format

Share Document