Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment

2014 ◽  
Vol 84 (1-2) ◽  
pp. 147-154 ◽  
Author(s):  
Guo-xia Zheng ◽  
Ya-jie Li ◽  
Lin-lin Qi ◽  
Xian-ming Liu ◽  
Hu Wang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tahnee Manning ◽  
Arjun Venkatesh Thilagaraj ◽  
Dmitri Mouradov ◽  
Richard Piola ◽  
Clare Grandison ◽  
...  

Abstract Background Dinoflagellates are a ubiquitous and ecologically important component of marine phytoplankton communities, with particularly notable species including those associated with harmful algal blooms (HABs) and those that bioluminesce. High-throughput sequencing offers a novel approach compared to traditional microscopy for determining species assemblages and distributions of dinoflagellates, which are poorly known especially in Australian waters. Results We assessed the composition of dinoflagellate assemblages in two Australian locations: coastal temperate Port Phillip Bay and offshore tropical waters of Davies Reef (Great Barrier Reef). These locations differ in certain environmental parameters reflecting latitude as well as possible anthropogenic influences. Molecular taxonomic assessment revealed more species than traditional microscopy, and it showed statistically significant differences in dinoflagellate assemblages between locations. Bioluminescent species and known associates of HABs were present at both sites. Dinoflagellates in both areas were mainly represented by the order Gymnodiniales (66%—82% of total sequence reads). In the warm waters of Davies Reef, Gymnodiniales were equally represented by the two superclades, Gymnodiniales sensu stricto (33%) and Gyrodinium (34%). In contrast, in cooler waters of Port Phillip Bay, Gymnodiniales was mainly represented by Gyrodinium (82%). In both locations, bioluminescent dinoflagellates represented up to 0.24% of the total sequence reads, with Protoperidinium the most abundant genus. HAB-related species, mainly represented by Gyrodinium, were more abundant in Port Phillip Bay (up to 47%) than at Davies Reef (28%), potentially reflecting anthropogenic influence from highly populated and industrial areas surrounding the bay. The entire assemblage of dinoflagellates, as well as the subsets of HAB and bioluminescent species, were strongly correlated with water quality parameters (R2 = 0.56–0.92). Significant predictors differed between the subsets: HAB assemblages were explained by salinity, temperature, dissolved oxygen, and total dissolved solids; whereas, bioluminescent assemblages were explained only by salinity and dissolved oxygen, and had greater variability. Conclusion High-throughput sequencing and genotyping revealed greater diversity of dinoflagellate assemblages than previously known in both subtropical and temperate Australian waters. Significant correlations of assemblage structure with environmental variables suggest the potential for explaining the distribution and composition of both HAB species and bioluminescent species.


Author(s):  
Helena Zec ◽  
Tushar D. Rane ◽  
Wen-Chy Chu ◽  
Tza-Huei Wang

We propose a microfluidic droplet-based platform that accepts an unlimited number of sample plugs from a multi-well plate, performs splitting of these sample droplets into smaller daughter droplets and subsequent synchronization-free, reliable fusion of sample daughter droplets with multiple reagents simultaneously. This system consists of two components: 1) a custom autosampler which generates a linear array of sub-microliter plugs in a microcapillary from a multi-well plate and 2) A microfluidic chip with channels for sample plug introduction, reagent merging and droplet incubation. This novel system generates large arrays of heterogeneous droplets from hundreds to thousands of samples while concurrently screening these arrays against a large array of reagents. This high throughput system minimizes sample and reagent consumption and can be applied to a gamut of biological assays, ranging from SNP detection to forensic screening.


2010 ◽  
Vol 13 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Zhongcheng Gong ◽  
Hong Zhao ◽  
Tianhua Zhang ◽  
Fang Nie ◽  
Pushparaj Pathak ◽  
...  

Author(s):  
Xuebin Tan ◽  
Hyeun-Joong Yoon ◽  
James Granneman ◽  
Hsiao-Ping Moore ◽  
Mark Ming-Cheng Cheng

Sign in / Sign up

Export Citation Format

Share Document