scholarly journals Elevated pCO2 reinforces preference among intertidal algae in both a specialist and generalist herbivore

2021 ◽  
Vol 168 ◽  
pp. 112377
Author(s):  
Andrea M. Fieber ◽  
Paul E. Bourdeau
2020 ◽  
Vol 63 (5) ◽  
pp. 407-417
Author(s):  
Lim Wai Yin ◽  
Lim Phaik Eem ◽  
Affendi Yang Amri ◽  
Song Sze Looi ◽  
Acga Cheng

AbstractWith the potential adverse effects of climate change, it is essential to enhance the understanding of marine ecosystem dynamics, which can be driven by the co-evolutionary interaction between autotrophs and herbivores. This study looked into the autotroph-herbivore interactions in Malaysian waters, mainly to determine if autotroph nutritional quality significantly influences herbivore consumption rates. We documented the relative consumption rate of a generalist herbivore (Chanos chanos Forsskål) obtained from the Straits of Malacca through multiple feeding trials using 12 macroalgal species collected from different coastal areas of the Straits of Malacca, the Straits of Johor, and the South China Sea. The herbivore fed selectively on the tested macroalgal species, with the most and least consumed species having the lowest and highest total nitrogen content, respectively. Besides total nitrogen content, the least consumed species also had the highest total phenolic content. Interestingly, we observed that the herbivore generally preferred to consume filamentous macroalgae, especially those collected from the South China Sea. Overall, our findings demonstrated that the feeding behaviour of a generalist herbivore could be influenced by the nutritional quality of the autotrophs, which may depend directly or indirectly on other factors such as autotroph morphology and geography.


2020 ◽  
Vol 161 ◽  
pp. 105148
Author(s):  
Jeff C. Clements ◽  
Luke A. Poirier ◽  
Fiz F. Pérez ◽  
Luc A. Comeau ◽  
José M.F. Babarro

1988 ◽  
Vol 138 (6) ◽  
pp. 1519-1523 ◽  
Author(s):  
Steven Foster ◽  
Deborah Lopez ◽  
Henry M. Thomas

2018 ◽  
Vol 75 (6) ◽  
pp. 2117-2128 ◽  
Author(s):  
Samuel P S Rastrick ◽  
Victoria Collier ◽  
Helen Graham ◽  
Tore Strohmeier ◽  
Nia M Whiteley ◽  
...  

Abstract Climate change driven alterations in salinity and carbonate chemistry are predicted to have significant implications particularly for northern costal organisms, including the economically important filter feeders Mytilus edulis and Ciona intestinalis. However, despite a growing number of studies investigating the biological effects of multiple environmental stressors, the combined effects of elevated pCO2 and reduced salinity remain comparatively understudied. Changes in metabolic costs associated with homeostasis and feeding/digestion in response to environmental stressors may reallocate energy from growth and reproduction, affecting performance. Although these energetic trade-offs in response to changes in routine metabolic rates have been well demonstrated fewer studies have investigated how these are affected by changes in feeding plasticity. Consequently, the present study investigated the combined effects of 26 days’ exposure to elevated pCO2 (500 µatm and 1000 µatm) and reduced salinity (30, 23, and 16) on the energy available for growth and performance (Scope for Growth) in M. edulis and C. intestinalis, and the role of metabolic rate (oxygen uptake) and feeding plasticity [clearance rate (CR) and absorption efficiency] in this process. In M. edulis exposure to elevated pCO2 resulted in a 50% reduction in Scope for Growth. However, elevated pCO2 had a much greater effect on C. intestinalis, with more than a 70% reduction in Scope for Growth. In M. edulis negative responses to elevated pCO2 are also unlikely be further affected by changes in salinity between 16 and 30. Whereas, under future predicted levels of pCO2C. intestinalis showed 100% mortality at a salinity of 16, and a >90% decrease in Scope for Growth with reduced biomass at a salinity of 23. Importantly, this work demonstrates energy available for production is more dependent on feeding plasticity, i.e. the ability to regulate CR and absorption efficiency, in response to multiple stressors than on more commonly studied changes in metabolic rates.


2010 ◽  
Vol 7 (1) ◽  
pp. 289-300 ◽  
Author(s):  
R. Rodolfo-Metalpa ◽  
S. Martin ◽  
C. Ferrier-Pagès ◽  
J.-P. Gattuso

Abstract. Atmospheric CO2 partial pressure (pCO2) is expected to increase to 700 μatm or more by the end of the present century. Anthropogenic CO2 is absorbed by the oceans, leading to decreases in pH and the CaCO3 saturation state (Ω) of the seawater. Elevated pCO2 was shown to drastically decrease calcification rates in tropical zooxanthellate corals. Here we show, using the Mediterranean zooxanthellate coral Cladocora caespitosa, that an increase in pCO2, in the range predicted for 2100, does not reduce its calcification rate. Therefore, the conventional belief that calcification rates will be affected by ocean acidification may not be widespread in temperate corals. Seasonal change in temperature is the predominant factor controlling photosynthesis, respiration, calcification and symbiont density. An increase in pCO2, alone or in combination with elevated temperature, had no significant effect on photosynthesis, photosynthetic efficiency and calcification. The lack of sensitivity C. caespitosa to elevated pCO2 might be due to its slow growth rates, which seem to be more dependent on temperature than on the saturation state of calcium carbonate in the range projected for the end of the century.


2019 ◽  
Vol 19 (2) ◽  
pp. 485-496 ◽  
Author(s):  
Wenbo Chen ◽  
Xiaowei Yang ◽  
Guillaume Tetreau ◽  
Xiaozhao Song ◽  
Cathy Coutu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document