scholarly journals A macro-element for integrated time domain analyses representing bucket foundations for offshore wind turbines

2018 ◽  
Vol 59 ◽  
pp. 158-178 ◽  
Author(s):  
K.S. Skau ◽  
G. Grimstad ◽  
A.M. Page ◽  
G.R. Eiksund ◽  
H.P. Jostad
2018 ◽  
Vol 167 ◽  
pp. 23-35 ◽  
Author(s):  
Ana M. Page ◽  
Gustav Grimstad ◽  
Gudmund Reidar Eiksund ◽  
Hans Petter Jostad

2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Vincenzo Piscopo ◽  
Antonio Scamardella ◽  
Giovanni Battista Rossi ◽  
Francesco Crenna ◽  
Marta Berardengo

The fatigue assessment of mooring lines for floating offshore wind turbines represents a challenging issue not only for the reliable design of the stationkeeping system but also for the economic impact on the installation and maintenance costs over the entire lifetime of the offshore wind farm. After a brief review about the state-of-art, the nonlinear time-domain hydrodynamic model of floating offshore wind turbines moored by chain cables is discussed. Subsequently, the assessment of the fatigue damage in the mooring lines is outlined, focusing on the combined-spectrum approach. The relevant fatigue parameters, due to the low- and wave-frequency components of the stress process, are estimated by two different methods. The former is based on the time-domain analysis of the filtered stress process time history. The latter, instead, is based on the spectral analysis of the stress process by two advanced methods, namely the Welch and Thomson ones. Subsequently, a benchmark study is performed, assuming as reference floating offshore wind turbine the OC4-DeepCWind semisubmersible platform, equipped with the 5 MW NREL wind turbine. The cumulative fatigue damage is determined for eight load conditions, including both power production and parked wind turbine situations. A comparative analysis between time-domain and spectral analysis methods is also performed. Current results clearly show that the endorsement of advanced spectral analysis methods can be helpful to improve the reliability of the fatigue life assessment of mooring lines.


2019 ◽  
Vol 9 (3) ◽  
pp. 608 ◽  
Author(s):  
Yu-Hsien Lin ◽  
Shin-Hung Kao ◽  
Cheng-Hao Yang

This study aims to develop a modularized simulation system to estimate dynamic responses of floating Offshore Wind Turbines (OWTs) based on the concepts of spar buoy and Tension Leg Platform (TLP) corresponding with two typical mooring lines. The modular system consists of the hydrodynamic simulator based the Cummins time domain equation, the Boundary Element Method (BEM) solver based on the 3D source distribution method, and an open-source visualization software ParaView to analyze the interaction between floating OWTs and waves. In order to realize the effects of mooring loads on the floating OWTs, the stiffness and damping matrices are applied to the quasi-static mooring system. The Response Amplitude Operators (RAOs) are compared between our predicted results and other published data to verify the modularized simulation system and understand the influence of mooring load on the motion responses in regular or irregular waves. It is also demonstrated that the quasi-static mooring system is applicable to different types of mooring lines as well as determining real-time motion responses. Eventually, wave load components at the resonance frequencies of different motion modes for selected floating OWTs would be present in the time domain.


2017 ◽  
Vol 16 (2) ◽  
pp. 1007-1040 ◽  
Author(s):  
F. Santangelo ◽  
G. Failla ◽  
F. Arena ◽  
C. Ruzzo

Author(s):  
Espen Engebretsen ◽  
Herbjørn Haslum ◽  
Olav Aagaard

Abstract Coupled aero-hydro-servo-elastic time-domain analysis is required for robust design and engineering of Floating Offshore Wind Turbines (FOWTs). For spar-type FOWTs, it is convenient to adopt a nonlinear beam finite element formulation in order to capture the coupled structural response of substructure, tower, blades and mooring lines accurately. The Distributed Potential Theory (DPT) approach applies first-order frequency-dependent added mass, radiation damping and excitation loads distributed over all submerged beam elements in the coupled time-domain simulation, as obtained from diffraction/radiation analysis. This approach therefore includes frequency-dependent diffraction effects for all wavelengths, while keeping the substructure flexible, thus enabling hydro-elastic coupling and extraction of internal sectional loads along the substructure. This paper demonstrates the use of DPT in coupled aero-hydro-servo-elastic time-domain analysis of a spar-type FOWT and illustrates the effect on tower and substructure fatigue life compared to using the classical Morison approach.


Sign in / Sign up

Export Citation Format

Share Document