Targeting heparanase to the mammary epithelium enhances mammary gland development and promotes tumor growth and metastasis

2018 ◽  
Vol 65 ◽  
pp. 91-103 ◽  
Author(s):  
Ilanit Boyango ◽  
Uri Barash ◽  
Liat Fux ◽  
Inna Naroditsky ◽  
Neta Ilan ◽  
...  
Author(s):  
Weizhen Chen ◽  
Wei Wei ◽  
Liya Yu ◽  
Xin Zhang ◽  
Fujing Huang ◽  
...  

Baicalin, the main flavonoid component extracted from Scutellaria roots, has a variety of biological activities and is therefore used in the treatment of many kinds of diseases. However, whether baicalin affects the normal development of tissues and organs is still unclear. Here, using a mouse mammary gland model, we investigated the effects of baicalin on the expansion of mammary stem cells (MaSCs) and mammary development, as well as breast cancer progression. Interestingly, we found that baicalin administration significantly accelerates duct elongation at puberty, and promotes alveolar development and facilitates milk secretion during pregnancy. Furthermore, self-renewal of MaSCs was significantly promoted in the presence of baicalin. Moreover, in a tumor xenograft model, baicalin promoted tumor growth of the MDA-MB-231 cell line, but suppressed tumor growth of the ZR-751 cell line. Mechanistically, baicalin can induce expression of the protein C receptor, while inhibiting the expression of the estrogen receptor. Transcriptome analysis revealed that baicalin is involved in signaling pathways related to mammary gland development, immune response, and cell cycle control. Taken together, our results from comprehensive investigation of the biological activity of baicalin provide a theoretical basis for its rational clinical application.


Oncogene ◽  
2000 ◽  
Vol 19 (8) ◽  
pp. 1077-1084 ◽  
Author(s):  
Archie J Vomachka ◽  
Scott L Pratt ◽  
Jason A Lockefeer ◽  
Nelson D Horseman

2009 ◽  
Vol 20 (10) ◽  
pp. 2572-2581 ◽  
Author(s):  
David Vaught ◽  
Jin Chen ◽  
Dana M. Brantley-Sieders

Eph receptor tyrosine kinases, including EphA2, are expressed in the mammary gland. However, their role in mammary gland development remains poorly understood. Using EphA2-deficient animals, we demonstrate for the first time that EphA2 receptor function is required for mammary epithelial growth and branching morphogenesis. Loss of EphA2 decreased penetration of mammary epithelium into fat pad, reduced epithelial proliferation, and inhibited epithelial branching. These defects appear to be intrinsic to loss of EphA2 in epithelium, as transplantation of EphA2-deficient mammary tissue into wild-type recipient stroma recapitulated these defects. In addition, HGF-induced mammary epithelial branching morphogenesis was significantly reduced in EphA2-deficient cells relative to wild-type cells, which correlated with elevated basal RhoA activity. Moreover, inhibition of ROCK kinase activity in EphA2-deficient mammary epithelium rescued branching defects in primary three-dimensional cultures. These results suggest that EphA2 receptor acts as a positive regulator in mammary gland development, functioning downstream of HGF to regulate branching through inhibition of RhoA. Together, these data demonstrate a positive role for EphA2 during normal mammary epithelial proliferation and branching morphogenesis.


2000 ◽  
Vol 113 (12) ◽  
pp. 2129-2138 ◽  
Author(s):  
S. Naylor ◽  
M.J. Smalley ◽  
D. Robertson ◽  
B.A. Gusterson ◽  
P.A. Edwards ◽  
...  

Several Wnt genes are expressed in the postnatal mouse mammary gland and are thought to be involved in mammary gland development. Ectopic expression of Wnt-1, which is not normally expressed in the mammary gland, drives the formation of a pre-neoplastic hyperplasia. Cell culture-based assays have shown that Wnt-1 and some mammary-expressed Wnts transform C57MG cells. This has led to the suggestion that Wnt-1 functions as an oncogene through the inappropriate activation of developmental events that are normally controlled by the ‘transforming’ class of Wnts. In this study, Wnt-7b was expressed in vivo using recombinant retroviruses. Wnt-7b did not alter normal mammary gland development despite having similar effects to Wnt-1 in cell culture. We conclude that the in vitro classification of Wnts as ‘transforming’ does not correlate with the transformation in vivo. To facilitate the analysis of Wnt-expression, a lacZ-containing, bicistronic recombinant retrovirus was developed. Immunohistochemistry and electron microscopy identified retrovirally transduced myoepithelial and luminal epithelial cells in normal and hyperplastic tissues. The distribution of transduced cells in mammary outgrowths was consistent with current models of mammary stem cell identity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Parisa Rabieifar ◽  
Ting Zhuang ◽  
Tânia D. F. Costa ◽  
Miao Zhao ◽  
Staffan Strömblad

Abstract p21-activated kinases (PAKs) are serine/threonine kinases functioning as downstream effectors of the small GTPases Rac1 and Cdc42. Members of the PAK family are overexpressed in human breast cancer, but their role in mammary gland development is not fully explored. Here we examined the functional role of PAK4 in mammary gland development by creating a mouse model of MMTV-Cre driven conditional PAK4 gene depletion in the mammary gland. The PAK4 conditional knock-out mice were born healthy, with no observed developmental deficits. Mammary gland whole-mounts revealed no defects in ductal formation or elongation of the mammary tree through the fat pad. PAK4 gene depletion also did not alter proliferation and invasion of the mammary epithelium in young virgin mice. Moreover, adult mice gave birth to healthy pups with normal body weight upon weaning. This implies that MMTV-Cre induced gene depletion of PAK4 in mice does not impair normal mammary gland development and thereby provides an in vivo model that can be explored for examination of the potential function of PAK4 in breast cancer.


2003 ◽  
Vol 8 (4) ◽  
pp. 383-394 ◽  
Author(s):  
Ilaria Taddei ◽  
Marisa M. Faraldo ◽  
Jérôme Teulière ◽  
Marie-Ange Deugnier ◽  
Jean Paul Thiery ◽  
...  

2015 ◽  
Vol 35 (9) ◽  
pp. 1543-1556 ◽  
Author(s):  
Daisuke Hasegawa ◽  
Veronica Calvo ◽  
Alvaro Avivar-Valderas ◽  
Abigale Lade ◽  
Hsin-I Chou ◽  
...  

Xbp1, a key mediator of the unfolded protein response (UPR), is activated by IRE1α-mediated splicing, which results in a frameshift to encode a protein with transcriptional activity. However, the direct function of Xbp1 in epithelial cells during mammary gland development is unknown. Here we report that the loss of Xbp1 in the mammary epithelium through targeted deletion leads to poor branching morphogenesis, impaired terminal end bud formation, and spontaneous stromal fibrosis during the adult virgin period. Additionally, epithelial Xbp1 deletion induces endoplasmic reticulum (ER) stress in the epithelium and dramatically inhibits epithelial proliferation and differentiation during lactation. The synthesis of milk and its major components, α/β-casein and whey acidic protein (WAP), is significantly reduced due to decreased prolactin receptor (Prlr) and ErbB4 expression in Xbp1-deficient mammary epithelium. Reduction of Prlr and ErbB4 expression and their diminished availability at the cell surface lead to reduced phosphorylated Stat5, an essential regulator of cell proliferation and differentiation during lactation. As a result, lactating mammary glands in these mice produce less milk protein, leading to poor pup growth and postnatal death. These findings suggest that the loss of Xbp1 induces a terminal UPR which blocks proliferation and differentiation during mammary gland development.


Sign in / Sign up

Export Citation Format

Share Document