Multi-scale deformation behavior investigation of 18Cr–8Ni austenitic steel subjected to low-cycle fatigue loading

2005 ◽  
Vol 55 (2) ◽  
pp. 106-117 ◽  
Author(s):  
Duyi Ye ◽  
Saburo Matsuoka ◽  
Nobuo Nagashima ◽  
Naoyuki Suzuki
2004 ◽  
Vol 36 (1-2) ◽  
pp. 85-98 ◽  
Author(s):  
L.J. Chen ◽  
P.K. Liaw ◽  
H. Wang ◽  
Y.H. He ◽  
R.L. McDaniels ◽  
...  

2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2021 ◽  
Author(s):  
Kaiju Lu ◽  
Ankur Chauhan ◽  
Aditya Srinivasan Tirunilai ◽  
Jens Freudenberger ◽  
Alexander Kauffmann ◽  
...  

1999 ◽  
Author(s):  
V. M. Harik ◽  
J. R. Klinger ◽  
B. K. Fink ◽  
T. A. Bogetti ◽  
A. Paesano ◽  
...  

Abstract Low cycle fatigue (LCF) behavior of unidirectional polymer matrix composites (PMCs) reinforced with glass fibers is investigated. LCF conditions involve high loads reaching up to 90% of the material ultimate strength. LCF characterization of PMCs is carried out under tension-tension fatigue loading to identify the key physical phenomena occurring in PMCs under LCF conditions and to determine their unique characteristics. Analysis of experimental data indicates that finite strain rates, large strains and stress ratios may affect LCF behavior of PMC structures and the property degradation rates.


Author(s):  
Masaki Mitsuya ◽  
Hiroshi Yatabe

Buried pipelines may be deformed due to earthquakes and also corrode despite corrosion control measures such as protective coatings and cathodic protection. In such cases, it is necessary to ensure the integrity of the corroded pipelines against earthquakes. This study developed a method to evaluate the earthquake resistance of corroded pipelines subjected to seismic ground motions. Axial cyclic loading experiments were carried out on line pipes subjected to seismic motion to clarify the cyclic deformation behavior until buckling occurs. The test pipes were machined so that each one would have a different degree of local metal loss. As the cyclic loading progressed, displacement shifted to the compression side due to the formation of a bulge. The pipe buckled after several cycles. To evaluate the earthquake resistance of different pipelines, with varying degrees of local metal loss, a finite-element analysis method was developed that simulates the cyclic deformation behavior. A combination of kinematic and isotropic hardening components was used to model the material properties. These components were obtained from small specimen tests that consisted of a monotonic tensile test and a low cycle fatigue test under a specific strain amplitude. This method enabled the successful prediction of the cyclic deformation behavior, including the number of cycles required for the buckling of pipes with varying degrees of metal loss. In addition, the effect of each dimension (depth, longitudinal length and circumferential width) of local metal loss on the cyclic buckling was studied. Furthermore, the kinematic hardening component was investigated for the different materials by the low cycle fatigue tests. The kinematic hardening components could be regarded as the same for all the materials when using this component as the material property for the finite-element analyses simulating the cyclic deformation behavior. This indicates that the cyclic deformation behavior of various line pipes can be evaluated only based on their respective tensile properties and common kinematic hardening component.


2011 ◽  
Vol 59 (11) ◽  
pp. 4690-4699 ◽  
Author(s):  
S.Q. Zhang ◽  
S.J. Li ◽  
M.T. Jia ◽  
F. Prima ◽  
L.J. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document