Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration

2016 ◽  
Vol 114 ◽  
pp. 9-17 ◽  
Author(s):  
M. Pawlyta ◽  
B. Tomiczek ◽  
L.A. Dobrzański ◽  
M. Kujawa ◽  
B. Bierska-Piech
1998 ◽  
Vol 13 (4) ◽  
pp. 974-978 ◽  
Author(s):  
Seong-Hyeon Hong ◽  
Naesung Lee ◽  
Altaf H. Carim ◽  
Gary L. Messing

Interfacial precipitation in sol-gel derived, titania-doped diphasic mullite gels was investigated using conventional and high resolution transmission electron microscopy. Rutile, anatase, and brookite precipitated on the interface between {110} planes of mullite and glass pockets in the sintered body. The formation of brookite may be attributable to the Si- and Al-rich environment during precipitation. Each polymorph of titania has a unique morphology and orientation relationship with mullite. Brookite exhibits a truncated pill box shape, and anatase displays a vermicular morphology. Quenching experiments suggest that the precipitates grow and undergo phase transformations during cooling.


1991 ◽  
Vol 230 ◽  
Author(s):  
J. C. Lin ◽  
R. A. Hoffman

AbstractIon-beam mixing and isothermal annealing techniques were applied to induce phase transformations in Co/Nb and Co/Zr multilayer film stacks. Transmission electron microscopy(TEM) and x-ray diffraction(XRD) were used to characterize the microstructure of the films. Interfacial morphology and chemistry of the films were examined by Rutherford backscattering spectrometry(RBS) and cross-section transmission electron microscopy(XTEM). The formation of amorphous phases was found in both systems by either technique. A comparison of the phase transformation mechanisms induced by ion-beam mixing and isothermal annealing is given. The thermodynamic and kinetic factors controlling the phase formation and stability are discussed. For the isothermal annealing, the final stable configuration is predicted by equilibrium phase diagrams.


1994 ◽  
Vol 332 ◽  
Author(s):  
James M. Howe ◽  
W. E. Benson ◽  
A. Garg ◽  
Y.-C. Chang

ABSTRACTIn situ hot-stage high-resolution transmission electron microscopy (HRTEM) provides unique capabilities for quantifying the dynamics of interfaces at the atomic level. Such information is critical for understanding the theory of interfaces and solid-state phase transformations. This paper provides a brief description of particular requirements for performing in situ hot-stage HRTEM, summarizes different types of in situ HRTEM investigations and illustrates the use of this technique to obtain quantitative data on the atomic mechanisms and kinetics of interface motion in precipitation, crystallization and martensitic reactions. Some limitations of in situ hot-stage HRTEM and future prospects of this technique are also discussed.


Sign in / Sign up

Export Citation Format

Share Document