Crystal rotation and microstructures in an aluminum single-slip system under tensile loading

2018 ◽  
Vol 146 ◽  
pp. 121-126
Author(s):  
Yutaka Yoshida ◽  
Jun-ichi Shibano ◽  
Ken-ichi Fukuda ◽  
Kengo Terabayashi ◽  
Masato Eguchi ◽  
...  
2014 ◽  
Vol 63 (7) ◽  
pp. 533-538
Author(s):  
Jun-ichi SHIBANO ◽  
Kentaro KAJIWARA ◽  
Takuya TSUKAMOTO ◽  
Hirokazu KAWAI ◽  
Setsuo MIURA ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyan Li ◽  
Wei Yang

We investigate the compressive yielding of Ni single crystals by performing atomistic simulations with the sample diameters in the range of 5 nm ∼ 40 nm. Remarkable effects of sample sizes on the yield strength are observed in the nanopillars with two different orientations. The deformation mechanisms are characterized by massive dislocation activities within a single slip system and a nanoscale deformation twining in an octal slip system. A dislocation dynamics-based model is proposed to interpret the size and temperature effects in single slip-oriented nanopillars by considering the nucleation of incipient dislocations.


2014 ◽  
Vol 777 ◽  
pp. 176-181 ◽  
Author(s):  
Junichi Shibano ◽  
Kentaro Kajiwara ◽  
T. Tsukamoto ◽  
H. Kawai ◽  
Setsuo Miura ◽  
...  

A ductile damage progress of an aluminum single crystal with the prior activity of the single slip system under tensile loading was verified by a profile analysis using white X-ray obtained in BL28B2 beam line of SPring-8. In this study, the aluminum single crystal of the purity 6N was used as a specimen prepared in I-type geometry for tensile test. A notch was introduced into one side of the center of a parallel part of the specimen by the wire electric discharge machining. White X-ray beam, which has 50 μm in both height and width, was incident into the specimen on the Bragg angle θ of 3 degrees using energy dispersive X-ray diffraction technique. The specimen was deformed by elongation in the direction of 45°to [11 and [11 crystal orientations, respectively, and a diffraction profile of the white X-ray from Al220 plane was analyzed. In profile analysis, an instrumental function was defined in consideration both of a divergence by a slit and a response function peculiar to the energy dispersive method. The Gauss component of integral breadth related to non-uniform strain and the Cauchy component of integral breadth related to crystallite size were determined by eliminating the broadening by the instrumental function from the diffraction profile of white X-ray. As a result, the characteristics of ductile damage progress near the notch of the aluminum single crystal were inspected from the distribution of both non-uniform strain and dislocation density.


2014 ◽  
Vol 47 (3) ◽  
pp. 887-898 ◽  
Author(s):  
Darren C. Pagan ◽  
Matthew P. Miller

A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye's model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measuredin situfrom a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments.


Author(s):  
J. Temple Black

There are two types of edge defects common to glass knives as typically prepared for microtomy purposes: 1) striations and 2) edge chipping. The former is a function of the free breaking process while edge chipping results from usage or bumping of the edge. Because glass has no well defined planes in its structure, it should be highly resistant to plastic deformation of any sort, including tensile loading. In practice, prevention of microscopic surface flaws is impossible. The surface flaws produce stress concentrations so that tensile strengths in glass are typically 10-20 kpsi and vary only slightly with composition. If glass can be kept in compression, wherein failure is literally unknown (1), it will remain intact for long periods of time. Forces acting on the tool in microtomy produce a resultant force that acts to keep the edge in compression.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Sign in / Sign up

Export Citation Format

Share Document