crystal rotation
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 33 (10) ◽  
pp. 104101
Author(s):  
Yong Liu ◽  
Zhong Zeng ◽  
Liangqi Zhang ◽  
Hao Liu ◽  
Yao Xiao ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1397
Author(s):  
Dayu Shu ◽  
Li Wang ◽  
Qiang Chen ◽  
Yi Yao ◽  
Minghui Li ◽  
...  

The present study evaluated the β recrystallization behavior and deformation microtexture evolution of TB6 titanium alloy (Ti-10V-2Fe-3Al) taking place during isothermal compression. The hot deformation tests were carried out in the temperature range below the β phase transition temperature and spanned a wide strain rate range of 0.0001~1 s−1. Microstructure evolution on β phase, including its recrystallization behavior and microtexture formation, is sensitive to the strain rates, whereas the average grain size of equiaxed α phase exhibits a slight increase with the strain rate decreasing. Moreover, β recrystallization is not homogeneous among the prior β grains, and is characterized by: (I) enriched β sub-grains, (II) sporadically or chain-like distributed recrystallized β grains with a grain size far less than the prior β grains, and (III) wave-shaped β grain boundaries. The β recrystallization is inadequate and its orientation takes on the inheritance characteristic, which makes the β microtexture significant after deformation. At a lower strain rate, the high activity of the {11−2}<111> and {12−3}<111> slip systems induced the crystal rotation around <101>, but such crystal rotation did not destroy the Burgers orientation relationship (BOR), which could be accounted for by the generation of a strong microtexture of <001>//RD. The divergences on β recrystallization fraction, the operation of slip systems, and initial crystal orientations explain the different microtexture components with varied intensities under different deformation conditions.


Author(s):  
Kang Yan ◽  
Zhongwei Chen ◽  
Wenjie Lu ◽  
Yanni Zhao ◽  
Wei Le ◽  
...  

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Brian R. Pauw ◽  
Andrew J. Smith ◽  
Tim Snow ◽  
Olga Shebanova ◽  
John P. Sutter ◽  
...  

Ultra-SAXS can enhance the capabilities of existing synchrotron SAXS/WAXS beamlines. A compact ultra-SAXS module has been developed, which extends the measurable q-range with 0.0015 ≤ q (nm−1) ≤ 0.2, allowing structural dimensions in the range 30 ≤ D (nm) ≤ 4000 to be probed in addition to the range covered by a high-end SAXS/WAXS instrument. By shifting the module components in and out on their respective motor stages, SAXS/WAXS measurements can be easily and rapidly interleaved with USAXS measurements. The use of vertical crystal rotation axes (horizontal diffraction) greatly simplifies the construction, at minimal cost to efficiency. In this paper, the design considerations, realization and synchrotron findings are presented. Measurements of silica spheres, an alumina membrane, and a porous carbon catalyst are provided as application examples.


Sign in / Sign up

Export Citation Format

Share Document