Characterization of microstructure and mechanical properties for Ti-6Al-4 V processed by rotary ultrasonic roller burnishing

2021 ◽  
pp. 111288
Author(s):  
Jian Zhao ◽  
Zhanqiang Liu ◽  
Guoxing Liang ◽  
Ming Lv ◽  
Yonggui Huang ◽  
...  
2013 ◽  
Vol 2 (1) ◽  
pp. 20120033
Author(s):  
R. N. Singh ◽  
A. K. Bind ◽  
J. B. Singh ◽  
J. K. Chakravartty ◽  
V. Thomas Paul ◽  
...  

2017 ◽  
Vol 20 (1) ◽  
pp. 1700396 ◽  
Author(s):  
Klaudia Horváth ◽  
Daria Drozdenko ◽  
Stanislav Daniš ◽  
Gerardo Garcés ◽  
Kristián Máthis ◽  
...  

2011 ◽  
Vol 409 ◽  
pp. 474-479 ◽  
Author(s):  
C. Chan ◽  
J.L. McCrea ◽  
G. Palumbo ◽  
Uwe Erb

Monolithic and multilayered iron electrodeposits were successfully synthesized by the pulse plating electrodeposition method. Electron microscopy and Vickers microhardness measurements were used to investigate the microstructure and mechanical properties of the iron electrodeposits produced. Two types of monolithic iron coatings were produced, one with a coarse grained, columnar structure and the other with an ultra-fine grained structure. Hall-Petch type grain size strengthening was observed in these monolithic coatings. Multilayered iron coatings composed of alternating layers of coarse grained and fine grained structures were also produced. The hardness value of the multilayered coatings falls between the hardness values for the two types of monolithic coatings produced. This study has demonstrated the possibility of applying a multilayered structure design to tailor the microstructure and mechanical properties of electrodeposited iron coatings.


1997 ◽  
Vol 3 (S2) ◽  
pp. 691-692
Author(s):  
K.C. Hsieh ◽  
E.A. Kenik

There has been increasing interest from industry to characterize the different precipitate distributions in ferrous materials to account for different mechanical properties that are observed. For this study, two different heat treatments were chosen for the experimental S5 tool steel, modified to have 0.24 wt% C. Alloy S5-1 received 1 hour of austenitizing at 970°C, was quenched at rate of 140°C/s and tempered for 1 hour at 200°C. Alloy S5-2 received 40 minutes of austenitizing at 940°C, was quenched at rate of 16°C/s and tempered for 1 hour at 200 °C. In this relatively low hardenability steel, both S5-1 and S5-2 show mixed microstructures of tempered martensite and bainite (Fig. 1, 2). Not surprisingly, the slower cooling rate for S5-2 created an alloy with inferior microstructure and mechanical properties. Even though these differences in precipitate distributions, could not directly account for differences in mechanical properties, it is of interest to study how the different heat treatments affected the precipitate distributions in S5-1 and S5-2.


2016 ◽  
Vol 42 (4) ◽  
pp. 213
Author(s):  
Damian Koclęga ◽  
Agnieszka Radziszewska ◽  
Sławomir Kąc ◽  
Włodzimierz Zowczak ◽  
Aleksandra Dębowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document