Al and Ni co-doped ZnO films with room temperature ferromagnetism, low resistivity and high transparence

2011 ◽  
Vol 126 (3) ◽  
pp. 797-803 ◽  
Author(s):  
Mingpeng Yu ◽  
Hong Qiu ◽  
Xiaobai Chen ◽  
Hui Li ◽  
Wei Gong
2005 ◽  
Vol 877 ◽  
Author(s):  
M. Wei ◽  
N. Khare ◽  
K. A. Yates ◽  
D. Zhi ◽  
J. L. MacManus-Driscoll

AbstractNanosized Co-doped ZnO samples were synthesized using an ultrasonic spray assisted chemical vapour deposition method. Microstructural and magnetic properties of these samples were studied. The room-temperature ferromagnetism was observed in the Co-doped ZnO. Also, x-ray analysis revealed a wurtzite ZnO structure with a small change of the lattice constants due to the doping of Co in ZnO. Raman spectroscopy of the Co-doped ZnO films indicated direct substitution of Co. Scanning electron microscopy showed nanostructured Co-doped ZnO with a ring or cup shape. Transmission electron microscopy analysis revealed nano grains within the rings of an average diameter of around 10 nm. Both energy dispersive spectroscopy and energy-filtered transmission electron microscopy indicated a uniform distribution of Co.


2009 ◽  
Vol 60 (4) ◽  
pp. 214-217 ◽  
Author(s):  
L.J. Zhuge ◽  
X.M. Wu ◽  
Z.F. Wu ◽  
X.M. Chen ◽  
Y.D. Meng

2014 ◽  
Vol 577 ◽  
pp. 19-22
Author(s):  
Ping Cao ◽  
Yue Bai ◽  
Zhi Qu

Co-doped ZnO nanoparticles were fabricated by an electrodeposition method. The XPS results show Co ions have doped into the ZnO crystal lattices successfully. The as-grown sample has no ferromagnetism at room temperature. But after an ammine plasma treatment the room temperature ferromagnetism were detected on Co0.04Zn0.96O nanoparticles. The Hall measurement reveals after the treatment the resistivity increase by three orders of magnitude. Although the aspect conductivity is n type, some holes generated by N doping play an important role to induce the ferromagnetic properties for Co doped ZnO sample.


Sign in / Sign up

Export Citation Format

Share Document