Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels

2009 ◽  
Vol 30 (9) ◽  
pp. 3686-3689 ◽  
Author(s):  
Ranfeng Qiu ◽  
Shinobu Satonaka ◽  
Chihiro Iwamoto
2010 ◽  
Vol 154-155 ◽  
pp. 325-328
Author(s):  
Hai Jun Yang ◽  
Yan Song Zhang ◽  
Jie Shen ◽  
Xin Min Lai

It has been proved that the initial gap has obvious influence on nugget formation, but little works focused on the effect of initial gap on the tensile strength of resistance spot welded (RSW) joints. In this paper, a 3D FE model was built for solving this question. The results show that, even though there are some fluctuations of weld diameter and tensile strength of RSW joints with initial gap, the tensile strength and weld diameter of welded joints with initial gap are still larger than that of welded joints without gap, which confirm that the influence of initial gap on tensile shear strength is little significant. The computation results agree well with experiment.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 976
Author(s):  
Ali Afzal ◽  
Mohsen Hamedi ◽  
Chris Valentin Nielsen

Al-Si is the most popular coating used to prevent oxidation on the surfaces of hot-stamped steel sheets during the heating process. However, like other coatings, it affects the strength of the spot welds in joining the hot-stamped steel parts. In this study, the effects of Al-Si coating on the tensile strength of the resistance spot-welded joints in hot-stamped steel are discussed. Two types of 1.8 mm hot-stamped steel, in uncoated and Al-Si coated forms, were resistance spot-welded, and the tensile shear behavior of the welded joints was studied in both static and dynamic tests. To do this, a special fixture for impact tensile shear tests was designed and fabricated. In the case of the Al-Si coated steel, the presence of the molten Al-Si over the fusion zone, especially its aggregation in the edge of the weld nugget, caused a decrease in the maximum tensile load capacity and a failure of energy absorption in static and dynamic tests, respectively. Additionally, it increased the probability of changing its failure mode from pull out to interfacial fracture in the dynamic test. This study shows that the tensile strength behavior of the welded joints for the Al-Si coated hot-stamped steel is lower than the uncoated steel during static, and especially dynamic, force.


2017 ◽  
Vol 30 ◽  
pp. 396-405 ◽  
Author(s):  
Jianbin Chen ◽  
Xinjian Yuan ◽  
Zhan Hu ◽  
Ting Li ◽  
Kanglong Wu ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 727
Author(s):  
Bofang Zhou ◽  
Taohua Li ◽  
Hongxia Zhang ◽  
Junliang Hou

The interface behavior of brazing between Zr-Cu filler metal and SiC ceramic was investigated. Based on the brazing experiment, the formation of brazing interface products was analyzed using OM, SEM, XRD and other methods. The stable chemical potential phase diagram was established to analyze the possible diffusion path of interface elements, and then the growth behavior of the interface reaction layer was studied by establishing relevant models. The results show that the interface reaction between the active element Zr and SiC ceramic is the main reason in the brazing process the interface products are mainly ZrC and Zr2Si and the possible diffusion path of elements in the product formation process is explained. The kinetic equation of interfacial reaction layer growth is established, and the diffusion constant (2.1479 μm·s1/2) and activation energy (42.65 kJ·mol−1) are obtained. The growth kinetics equation of interfacial reaction layer thickness with holding time at different brazing temperatures is obtained.


Sign in / Sign up

Export Citation Format

Share Document