hot stamped steel
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 13)

H-INDEX

5
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 976
Author(s):  
Ali Afzal ◽  
Mohsen Hamedi ◽  
Chris Valentin Nielsen

Al-Si is the most popular coating used to prevent oxidation on the surfaces of hot-stamped steel sheets during the heating process. However, like other coatings, it affects the strength of the spot welds in joining the hot-stamped steel parts. In this study, the effects of Al-Si coating on the tensile strength of the resistance spot-welded joints in hot-stamped steel are discussed. Two types of 1.8 mm hot-stamped steel, in uncoated and Al-Si coated forms, were resistance spot-welded, and the tensile shear behavior of the welded joints was studied in both static and dynamic tests. To do this, a special fixture for impact tensile shear tests was designed and fabricated. In the case of the Al-Si coated steel, the presence of the molten Al-Si over the fusion zone, especially its aggregation in the edge of the weld nugget, caused a decrease in the maximum tensile load capacity and a failure of energy absorption in static and dynamic tests, respectively. Additionally, it increased the probability of changing its failure mode from pull out to interfacial fracture in the dynamic test. This study shows that the tensile strength behavior of the welded joints for the Al-Si coated hot-stamped steel is lower than the uncoated steel during static, and especially dynamic, force.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1125
Author(s):  
Vojtech Kucera ◽  
Marcello Cabibbo ◽  
Filip Prusa ◽  
Jaroslav Fojt ◽  
Jaroslav Petr-Soini ◽  
...  

The chemical and phase composition of the coating and the coating/substrate interface of an Al-Si-coated 22MnB5 hot stamped steel was investigated by means of SEM-EDS, XRD, micro-XRD and electron diffraction. Moreover, the surface profile was analyzed by XPS and roughness measurements. The XPS measurements showed that the thickness of the Si and Al oxide layers increased from 14 to 76 nm after die-quenching, and that the surface roughness increased as well as a result of volume changes caused by phase transformations. In addition to the FeAl(Si) and Fe2Al5 phases and the interdiffusion layer forming complex structures in the coating, electron diffraction confirmed the presence of an Fe2Al5 phase, and also revealed very thin layers of Fe3(Al,Si)C, Fe2(Al,Si)5 and Al-bearing rod-shaped particles in the immediate vicinity of the steel interface. Moreover, the scattered nonuniform layer of the Fe2Al8Si phase was identified in the outermost layer of the coating. Despite numerous studies devoted to researching the phase composition of the Al-Si coating applied to hot stamped steel, electron diffraction revealed very thin layers and particles on the coating/substrate interface and outermost layer, which have not been analyzed in detail.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1692
Author(s):  
Yaowen Xu ◽  
Qiumei Ji ◽  
Gengwei Yang ◽  
Siqian Bao ◽  
Gang Zhao ◽  
...  

The final mechanical properties of hot-stamped steel are determined by the microstructures which are greatly influenced by the cooling process after hot stamping. This research studied the effect of the cooling path on the microstructures and hardness of 22MnB5 hot-stamped steel. The cooling path was divided into continuous and discontinuous (primary and secondary) processes. After cooling, the Vickers hardness along the thickness of the specimens was measured. The results indicate that, for a continuous cooling process, there was a critical cooling rate of 25 °C/s to obtain fully martensitic microstructure. For the discontinuous cooling process, the slower was the cooling rate, the higher was the degree of auto-tempering that occurred, and the greater was the amount of carbides that formed, regardless of the primary or secondary cooling rate. When the cooling rate was lower than the critical value, a higher primary cooling rate suppressed the auto-tempering of lath martensite and increased the quenched hardness. By contrast, the hardness was not sensitive to the cooling rate when it exceeded the critical value.


2020 ◽  
pp. 2000535
Author(s):  
Yongqiang Zhang ◽  
Rigui Yi ◽  
Pengbo Wang ◽  
Can Fu ◽  
Ning Cai ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1585
Author(s):  
Zhou Wang ◽  
Mingxin Huang

Hydrogen embrittlement is one of the largest obstacles against the commercialisation of ultra-high strength quenching and partitioning (Q&P) steels with ultimate tensile strength over 1500 MPa, including the hot stamped steel parts that have undergone a Q&P treatment. In this work, the influence of partitioning temperature on hydrogen embrittlement of ultra-high strength Q&P steels is studied by pre-charged tensile tests with both dog-bone and notched samples. It is found that hydrogen embrittlement resistance is enhanced by the higher partitioning temperature. Then, the hydrogen embrittlement mechanism is analysed in terms of hydrogen, retained austenite, and martensite matrix. Thermal desorption analysis (TDA) shows that the hydrogen trapping properties are similar in the Q&P steels, which cannot explain the enhancement of hydrogen embrittlement resistance. On the contrary, it is found that the relatively low retained austenite stability after the higher temperature partitioning ensures more sufficient TRIP effect before hydrogen-induced fracture. Additionally, dislocation recovery and solute carbon depletion at the higher partitioning temperature can reduce the flow stress of the martensite matrix, improving its intrinsic toughness and reducing its hydrogen sensitivity, both of which result in the higher hydrogen embrittlement resistance.


2020 ◽  
Vol 9 (6) ◽  
pp. 13147-13152
Author(s):  
Li Lu ◽  
Zhenxin Liang ◽  
Jia Yang ◽  
Qian Sun ◽  
Tiancai Zhu ◽  
...  

2020 ◽  
Vol 797 ◽  
pp. 140115 ◽  
Author(s):  
Weijian Chen ◽  
Pengfei Gao ◽  
Shuai Wang ◽  
Xiaolong Zhao ◽  
Zhengzhi Zhao

Sign in / Sign up

Export Citation Format

Share Document