Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties

2012 ◽  
Vol 41 ◽  
pp. 289-297 ◽  
Author(s):  
A.S. Singha ◽  
Raj K. Rana
2019 ◽  
Vol 8 (4) ◽  
pp. 12224-12229

In the recent years, due to environmental awareness of general public, researchers and scientists directed towards the use of natural fibers reinforced composites as environmentally friendly. Now a days, many scientists, researchers and engineers have explored the extraction, properties and utilization of natural fibers as economically and effectively as possible to produce good quality natural fiber reinforced polymer matrix composites. Many scientists and researchers proved that increase in fiber loading resulted in increased mechanical properties of the composite material. This will be the basis to develop and to evaluate properties of natural fiber reinforced polymer matrix composites. In this research, Kenaf long fiber reinforced epoxy matrix composites were successfully fabricated by simple and cost effective hand layup technique and their mechanical properties such as tensile strength, bending strength, impact strength, hardness with different fiber loading were successfully investigated. Water absorption capacity was also reported. The fibers are treated with NaoH solution for surface modification and to improve mechanical properties. The specimens are prepared according to ASTM standard and experiments were carried out


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2020 ◽  
Vol 9 (1) ◽  
pp. 8-14
Author(s):  
Wida Banar Kusumaningrum ◽  
Sasa Sofyan Munawar

Polypropylene composites reinforcing with natural fiber is potentially applied for automotive particularly on interior part design. Those kind of composites were contributed on renewable material, rapid rate biodegradation, and low cost of production compared to synthetic fiber. Furthermore, the mechanical properties including strenghtness, young modulus, and thermal stability have revealed good performance than glass fiber. Fiber which were fibrillated and have high aspect ratio that coresspond to diameter and lenght ratio of the fiber were noticed as enhancement factor for mechanical properties. Fiber fibrillation processing into microfibrillated cellulose (MFC) attempts for widening surface area of the fiber that improve polymer matrices compatibility. MFC from empty fruit bunches (EFB) and oil palm frond (FB) fibers were performed as pulp by mechanically and chemically treatments. Chemically treatment was conducted with bleach and unbleach procedure. Polypropylene with fiber was mixed using kneader, and injection for molding process. Manufacturing uses needs appropriate size presition, moderate lead time, and low defect. Heat deflection temperature (HDT) provide information for plastic material on indicating temperature condition effect to material deformation during normal loading. Material of origin, additive or filler size, and molding temperature were directly corelated to the HDT performance. Initial temperature of HDT exhibits different value for different kind of fillers and fiber treatments. PP/EFB composite by mechanical treatment gives high value of HDT compared to the fiber processing by chemical treatment both with bleach and unbleach process. Similar result have been performed in PP/FB composites related to initial temperature. PP/ EFB composite with 30% of fiber loading represent HDT in 149.4°C, and for PP/ FB composite with 30% fiber loading gives 150.7°C. By the addition of fiber loading could improve the HDT value of the composites.


2017 ◽  
Vol 867 ◽  
pp. 41-47 ◽  
Author(s):  
Chitra Umachitra ◽  
N.K. Palaniswamy ◽  
O.L. Shanmugasundaram ◽  
P.S. Sampath

Natural fibers have been used to reinforce materials in many composite structures. Many types of natural fibers have been investigated including flax, hemp, ramie, sisal, abaca, banana etc., due to the advantage that they are light weight, renewable resources and have marketing appeal. These agricultural wastes can also be used to prepare fiber reinforced polymer hybrid composites in various combinations for commercial use. Application of composite materials in structural applications has presented the need for the engineering analysis. The present work focuses on the fabrication of polymer matrix composites by using natural fibers like banana and cotton which are abundant in nature and analysing the effect of mechanical properties of the composites on different surface treatments on the fabric. The effect of various surface treatments (NaOH, SLS, KMnO4) on the mechanical properties namely tensile, flexural and impact was analyzed and are discussed in this project. Analysing the material characteristics of the compression moulded composites; their results were measured on sections of the material to make use of the natural fiber reinforced polymer composite material for automotive seat shell manufacturing.


Sign in / Sign up

Export Citation Format

Share Document