Effect of Mechanical Properties on Various Surface Treatment Processes of Banana/Cotton Woven Fabric Vinyl Ester Composite

2017 ◽  
Vol 867 ◽  
pp. 41-47 ◽  
Author(s):  
Chitra Umachitra ◽  
N.K. Palaniswamy ◽  
O.L. Shanmugasundaram ◽  
P.S. Sampath

Natural fibers have been used to reinforce materials in many composite structures. Many types of natural fibers have been investigated including flax, hemp, ramie, sisal, abaca, banana etc., due to the advantage that they are light weight, renewable resources and have marketing appeal. These agricultural wastes can also be used to prepare fiber reinforced polymer hybrid composites in various combinations for commercial use. Application of composite materials in structural applications has presented the need for the engineering analysis. The present work focuses on the fabrication of polymer matrix composites by using natural fibers like banana and cotton which are abundant in nature and analysing the effect of mechanical properties of the composites on different surface treatments on the fabric. The effect of various surface treatments (NaOH, SLS, KMnO4) on the mechanical properties namely tensile, flexural and impact was analyzed and are discussed in this project. Analysing the material characteristics of the compression moulded composites; their results were measured on sections of the material to make use of the natural fiber reinforced polymer composite material for automotive seat shell manufacturing.

2018 ◽  
Vol 37 (24) ◽  
pp. 1435-1455 ◽  
Author(s):  
Mohammad ZR Khan ◽  
Sunil K Srivastava ◽  
MK Gupta

In recent years, researchers and scientists are facing problems in terms of environmental imbalance and global warming owing to numerous use of composite materials prepared by synthetic fibers and petrochemical polymers. Hence, an increasing attention has been devoted to the research and development of polymer composites reinforced with the natural fibers. The natural fibers are the most suitable alternative of synthetic fibers due to their biodegradability, eco-friendliness and acceptable mechanical properties. The natural fibers are attracting the researchers and scientists to exploit their properties by amalgamating them with the polymer. The properties of natural fiber reinforced polymer composites mainly depend upon various factors such as properties of fibers and matrices, fiber loading percentage, size and orientation of fibers, stacking sequences, degree of interfacial bonding, fiber surface treatments, hybridization and incorporation of additives and coupling agents. Tensile and flexural tests are the most important investigations to predict the applications of the materials. A good number of research has been carried out on tensile and flexural properties of natural fiber reinforced polymer composites. In this paper, a review on tensile and flexural properties of natural fiber reinforced polymer composites in terms of effects of fiber weight fraction, geometry, surface treatments, orientations and hybridization is presented. Moreover, recent applications of natural fiber reinforced polymer composites are also presented in this study.


2020 ◽  
Vol 9 (2) ◽  
pp. 1103-1110

There has been a growing interest to produce composite polymeric materialsusing natural fibers as reinforcement. Scientists prefer natural fiber as a reinforced material to make polymer composites due to their bio-degradability characteristics,strong mechanical properties, high specific strength, low cost, non-abrasiveand ecofriendly nature . This review presents the reported work on natural plant based fiber reinforced polymer composites with special reference to the type of natural fibers and host polymers. Various fiber treatments, which are carried out to improve the fiber– hostadhesion, improved mechanical properties that greatly increase the application of these polymer composites specially in automobile industries and bioapplications are highlighted.


2019 ◽  
Vol 8 (4) ◽  
pp. 12224-12229

In the recent years, due to environmental awareness of general public, researchers and scientists directed towards the use of natural fibers reinforced composites as environmentally friendly. Now a days, many scientists, researchers and engineers have explored the extraction, properties and utilization of natural fibers as economically and effectively as possible to produce good quality natural fiber reinforced polymer matrix composites. Many scientists and researchers proved that increase in fiber loading resulted in increased mechanical properties of the composite material. This will be the basis to develop and to evaluate properties of natural fiber reinforced polymer matrix composites. In this research, Kenaf long fiber reinforced epoxy matrix composites were successfully fabricated by simple and cost effective hand layup technique and their mechanical properties such as tensile strength, bending strength, impact strength, hardness with different fiber loading were successfully investigated. Water absorption capacity was also reported. The fibers are treated with NaoH solution for surface modification and to improve mechanical properties. The specimens are prepared according to ASTM standard and experiments were carried out


2021 ◽  
Vol 58 (2) ◽  
pp. 100-118
Author(s):  
Prabhu Paulraj ◽  
Karthikeyan Balakrishnan ◽  
Ravi Raja Malar Vannan Rajendran ◽  
Balaji Alagappan

Renewability, recyclability and biodegradable contents are similar to glass fibers in natural fiber reinforced polymer composites (NFRP) which have definite mechanical properties. The interface of polymer matrix and natural fibers results the composites to achieve superior properties of products. Researchers have extended their product designs and production techniques by using renewable materials such as jute fiber, cotton fiber, silk fiber, etc. which are enormous and used in the manufacture of durable industrial goods of high-end quality. This paper reviews the current developments and the brief findings needed in literature, concentrating on the mechanical properties and applications of NFRP.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1567 ◽  
Author(s):  
Haoqun Hong ◽  
Ruijing Xiao ◽  
Quannan Guo ◽  
Hao Liu ◽  
Haiyan Zhang

Natural fiber reinforced polymer-based composites have been growing into a type of green composites. The properties of natural fiber reinforced polymer-based composites are closely related to the structure of natural fibers. Bagasse fiber (BF) is one of the most used natural fibers for preparing natural fiber reinforced polymer-based composites. However, few examples of previous research touch on the quantitatively characterization of structure of BF and its effect on the properties of BF reinforced polymer-based composites. In this work, four kinds of BF including untreated BF (UBF), alkali treated BF (ABF), BF modified by silane coupling agent (SBF), and BF modified combining alkali treatment with silane coupling agent (ASBF) were prepared and melting blended with polylactic acid (PLA) to prepare PLA/BF composites. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TGA) and mechanical properties testing were used to characterize and analyze the structure and properties of modified BF and its reinforced PLA-based composites. Results showed that the used methods changed the structure of BF and their bonding modes. The surface energies of UBF, ABF, SBF, and ASBF were 19.8 mJ/m2, 34.7 mJ/m2, 12.3 mJ/m2, and 21.6 mJ/m2, respectively. The O/C ratios of UBF, ABF, SBF and, ASBF are 0.48, 0.53, 0.47, and 0.51. Due to the synergistic effect of alkali treatment and silane coupling agent modification on the surface chemical properties, the content of silicon elements on the surface of ASBF (4.15%) was higher than that of ASBF (2.38%). However, due to the destroying of alkali treatment on the microstructure of BF, the alkali treatment had no prominently synergetic effect with coupling agent modification on the mechanical properties of PLA/BF composites. Alkali treatment removed the small molecular compounds from BF, decreased its thermal stability, and increased the crystalline region and crystallinity of cellulose. Meanwhile, alkali treatment made BF fibrillated and increased its contactable active area with the coupling agents, but destructed the nature structure of BF. The silane coupling agent played a more important role than alkali treatment did in improving the interfacial compatibility of PLA/BF composites.


2019 ◽  
Vol 39 (7) ◽  
pp. 597-611 ◽  
Author(s):  
Adewale George Adeniyi ◽  
Joshua O. Ighalo ◽  
Damilola Victoria Onifade

Abstract Natural fiber-reinforced polymer composites have been widely explored by many researchers due to their improved modulus and lightness compared to other conventional construction materials such as wood, metal, and steel. Cultivators only harvest banana and plantain fruits for food and leaves for food wrapping. The other portions of the plant are considered as wastes and a potential resource of natural fibers used as reinforcement in composites. Over the years, a plethora of research works has been done on banana and plantain fibers as fillers in plastic composites. Comprehensive catalogues of preparation techniques and mechanical properties were presented. The mechanical properties of banana fiber reinforcement in polyester and epoxy composites were compared to and contrasted with those of other natural fibers to elucidate its superiority or inferiority to those materials. This work gives an overview of the current state of knowledge of banana fiber-reinforced composites alongside the available research gaps.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 646
Author(s):  
N. M. Nurazzi ◽  
M. R. M. Asyraf ◽  
A. Khalina ◽  
N. Abdullah ◽  
H. A. Aisyah ◽  
...  

Even though natural fiber reinforced polymer composites (NFRPCs) have been widely used in automotive and building industries, there is still a room to promote them to high-level structural applications such as primary structural component specifically for bullet proof and ballistic applications. The promising performance of Kevlar fabrics and aramid had widely implemented in numerous ballistic and bullet proof applications including for bullet proof helmets, vest, and other armor parts provides an acceptable range of protection to soldiers. However, disposal of used Kevlar products would affect the disruption of the ecosystem and pollutes the environment. Replacing the current Kevlar fabric and aramid in the protective equipment with natural fibers with enhanced kinetic energy absorption and dissipation has been significant effort to upgrade the ballistic performance of the composite structure with green and renewable resources. The vast availability, low cost and ease of manufacturing of natural fibers have grasped the attention of researchers around the globe in order to study them in heavy armory equipment and high durable products. The possibility in enhancement of natural fiber’s mechanical properties has led the extension of research studies toward the application of NFRPCs for structural and ballistic applications. Hence, this article established a state-of-the-art review on the influence of utilizing various natural fibers as an alternative material to Kevlar fabric for armor structure system. The article also focuses on the effect of layering and sequencing of natural fiber fabric in the composites to advance the current armor structure system.


Sign in / Sign up

Export Citation Format

Share Document