Effects of Natural Fiber Surface Modification on Mechanical Properties of Poly(lactic acid) (PLA)/Sweet Sorghum Fiber Composites

2011 ◽  
Vol 50 (15) ◽  
pp. 1583-1589 ◽  
Author(s):  
Jing Zhong ◽  
Honghong Li ◽  
Jianliang Yu ◽  
Tianwei Tan
2018 ◽  
Vol 917 ◽  
pp. 37-41 ◽  
Author(s):  
Muhammad Khusairy bin Bakri ◽  
Elammaran Jayamani ◽  
Soon Kok Heng ◽  
Akshay Kakar

In this short review paper, the physical and mechanical properties of acacia wood, poly lactic acid (PLA) and polyhydroxyalkanoates (PHA) were analyzed. Existing factors that affect the mechanical properties of natural fiber composites were investigated and identified. By knowing these factors, a possibility and potentiality in implementing the natural acacia wood reinforced material with hybrid polymer were discussed. It was found that the acacia wood had the potential to re-condition soil and have the potential to become reinforced materials in hybrid polymer composites. In addition, using fully biodegradable polymer such as PLA and PHA made it sustainable and environmentally friendly.


2019 ◽  
Vol 33 (26) ◽  
pp. 1950305 ◽  
Author(s):  
Subhashree Patra ◽  
Kamal Lochan Mohanta ◽  
Chhatrapati Parida

This investigation aims to analyze the effects of electron beam irradiation on the morphological and mechanical properties of green composites synthesized using natural fibers of luffa cylindrica (LC) and biodegradable polymer poly (lactic) acid. This work aims to transform the low priced, readily available, agricultural waste product LC fiber into a high value product. The major challenge during the fabrication of natural fiber composites is the chemical bonding between hydrophilic LC fiber and hydrophobic poly lactic acid (PLA) matrix. Due to the disagreeing chemical nature of fiber and matrix, they are not compatible. The fibers are exposed to physical treatment, i.e., electron beam irradiation of different doses 0.5, 1.0, 2.0, 4.0 and 10.0 Gy using 6 MeV medical linear accelerator to increase the compatibility of LC fiber with PLA. Before irradiation, LC fibers are modified with calcium salts to explore the use of composite materials in biomedical terrain. When PLA is reinforced with irradiated LC fiber, tensile strength increases by 79.87% and flexural strength increases by 177%. Mechanical parameters generated by flexural and tensile tests of this study can be explored to have various clinical applications like bone implant, replacement of cervical cavities, etc.


2016 ◽  
Vol 36 (5) ◽  
pp. 489-497 ◽  
Author(s):  
John O. Akindoyo ◽  
Mohammad Dalour Hossen Beg ◽  
Suriati Ghazali ◽  
Muhammad Remanul Islam

Abstract The wettability, interfacial shear strength (IFSS), and Weibull characteristics of oil palm empty fruit bunch (EFB) fibers were studied to evaluate the mechanical properties of EFB- and poly(lactic acid) (PLA)-based composites. The fiber surface was modified through ultrasound and poly(dimethyl siloxane) treatment. The effects of treatment on the morphology, wettability, and structure of fibers were examined by scanning electron microscopy, contact angle, and Fourier transform infrared spectroscopy analysis, respectively. In addition, the Weibull characteristic was used to find the variability in strength of the fibers with respect to surface treatment. Furthermore, the IFSS of EFB fiber-PLA sandwich was investigated through single-fiber pull-out test, using a less strenuous technique. The mechanical properties (tensile strength, tensile modulus, flexural strength, and flexural modulus) of the composites were determined through mechanical testing. A comparison was drawn among the properties of PLA, raw EFB fiber-based composites, and treated EFB fiber-based composites. Additionally, the inter- and intra-relationship of fiber treatment, wettability, and IFSS with the mechanical properties of the PLA/EFB composites were also accounted.


2013 ◽  
Vol 21 (4) ◽  
pp. 1117-1127 ◽  
Author(s):  
Yanan Song ◽  
Jun Liu ◽  
Shaozhuang Chen ◽  
Yubin Zheng ◽  
Shilun Ruan ◽  
...  

2012 ◽  
Vol 200 ◽  
pp. 312-315
Author(s):  
Ping Zhang ◽  
Bing Tao Wang ◽  
De Gao ◽  
Li Hua Wen

The paper describes the production and the mechanical characteristics of composites made completely from renewable raw materials, the corn straw fiber and the biodegradable plastic, poly(lactic acid). The effect of straw fiber content on the mechanical properties of the composites was studied and the optimum mass fraction was 15%. To enhance the mechanical properties of the composites, two different methods were tested. Maleic anhydride as the compatilizer was introduced into the composites but the changes of the mechanical properties were small. While the other method, pre-treatment for straw fiber before blending, the mechanical properties increased obviously. The tensile strength and the impact strength were 35.6 MPa and 1.67 kJ/m2, respectively.


Sign in / Sign up

Export Citation Format

Share Document