Microstructure, residual stress and mechanical properties of a high strength steel weld using low transformation temperature welding wires

2015 ◽  
Vol 65 ◽  
pp. 1214-1221 ◽  
Author(s):  
Xizhang Chen ◽  
Yuanyuan Fang ◽  
Peng Li ◽  
Zhenzhen Yu ◽  
Xiaodong Wu ◽  
...  
2020 ◽  
Vol 62 (9) ◽  
pp. 891-900
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

Abstract The use of low transformation temperature (LTT) filler materials represents a smart approach for increasing the fatigue strength of welded high strength steel structures apart from the usual procedures of post weld treatment. The main mechanism is based on the effect of the low start temperature of martensite formation on the stress already present during welding. Thus, compressive residual stress formed due to constrained volume expansion in connection with phase transformation become highly effective. Furthermore, the weld metal has a high hardness that can delay the formation of fatigue cracks but also leads to low toughness. Fundamental investigations on the weldability of an LTT filler material are presented in this work, including the characterization of the weld microstructure, its hardness, phase transformation temperature and mechanical properties. Special attention was applied to avoid imperfections in order to ensure a high weld quality for subsequent fatigue testing. Fatigue tests were conducted on the welded joints of the base materials S355J2 and S960QL using conventional filler materials as a comparison to the LTT filler. Butt joints were used with a variation in the weld type (DY-weld and V-weld). In addition, a component-like specimen (longitudinal stiffener) was investigated where the LTT filler material was applied as an additional layer. The joints were characterized with respect to residual stress, its stability during cyclic loading and microstructure. The results show that the application of LTT consumables leads to a significant increase in fatigue strength when basic design guidelines are followed. This enables a benefit from the lightweight design potential of high-strength steel grades.


Author(s):  
Tianli Zhang ◽  
Hang Yu ◽  
Shiliang Li ◽  
Weiguang Wang ◽  
Wen Wu ◽  
...  

The effect of Pr6O11 on the microstructure and mechanical properties of high-strength steel weld metal was investigated by optical microscopy, scanning electron microscopy and mechanical testing. Three different contents of Pr6O11 were added to the flux-cored wires. The results demonstrate that the addition of 1% Pr6O11 can promote the refinement and spheroidization of inclusions, refine the grains, form acicular ferrites in the weld metal, and significantly improve the toughness. The addition of Pr6O11 promoted the formation of rare earth composite inclusions and acicular ferrites in the weld metal, refined the lath microstructure, inhibited the formation of martensite and bainite. The crack formation mode changed from the boundary cracking of the bainite clusters caused by the surface shear stress to the surface shear stress-induced decohesion of inclusion. Excessive addition of Pr6O11 will reduce the number of inclusion nucleation and deteriorate the mechanical properties. The wire No.2 with 1% Pr6O11 had the good comprehensive mechanical properties.


2013 ◽  
Vol 758 ◽  
pp. 21-32 ◽  
Author(s):  
Antonio José Mendes Gomes ◽  
Jorge Carlos Ferreira Jorge ◽  
Luís Felipe Guimarães de Souza ◽  
Ivani S. Bott

The present work is part of a wide research program which the main goal is the development of welding procedures for chain and accessories for application in mooring systems of oil platforms. In the specific case of the work in subject, the development of different covered electrodes formulations is discussed for obtaining high mechanical strength and impact toughness, of the order of 860 MPa and 50 joules at –20°C, respectively. Welded joints using the developed electrodes were prepared for evaluation of the mechanical properties, using preheat of 200°C, direct current, flat position and heat input of 1.5 kJ/mm. After welding, tensile, impact Charpy-V and hardness tests were performed in specimens removed integrally from the weld metal, both in as welded and heat treated conditions. The post weld heat treatment (PWHT) was conducted at 600°C for 1, 2 and 3 hours. The results shows that the obtained weld metals have mechanical properties higher than the minimum required for the welding of a IACS W22 R4 Grade steel, and particularly good impact properties, which indicates that the correct control of the chemical composition, particularly, of Mn-Ni balance, makes possible to achieve an adequate strength/toughness relationship for high strength steel weld metals, where the PWH is mandatory. In addition, it was verified that the increase in the time of PWHT did not promote substantial impairment on mechanical properties.


Author(s):  
Jianqun Tang ◽  
Jian-Ming Gong ◽  
Luyang Geng ◽  
Jiang Yong

SPV50Q high strength steel is often used to fabricate liquefied petroleum gas (LPG) spherical tanks with larger capacity, and tanks are expected to free post weld heat treatment (PWHT) for avoiding the possible reduction in strength. Sulfide stress corrosion cracking (SSCC), however, has been found in weldment, especially the heat-affected zone (HAZ), in LPG environment contaminated by wet H2S. The failure analysis showed that the existence of welding residual stress in weldment is one of the major factors in the occurrence of cracking. Post welding heat treatment (PWHT) is a feasible method of reducing welding residual stress. Therefore, in order to investigate the effect of heat treatment on mechanical properties, corrosion and fracture behavior of SPV50Q steel weldment, the difference in mechanical properties of the weldment with and without heat treatment at 590°C for 160 min after welding was measured using tensile test and impact test. The corrosion behaviors of base metal (BM), weld metal (WM) and HAZ metal in the weldment were investigated by potentiodynamic polarization in H2S-containing solution. In the same solution, the susceptibility to environmental cracking was evaluated by slow strain rate testing (SSRT). The feature of fracture and the morphologies of cracks were observed by scanning electrode microscope (SEM) and optical microscope (OP). The results indicate that the execution of heat treatment does not greatly change the properties of SPV50Q steel weldment, which can provide technology support for the remanufacturing of the LPG tanks having suffered from SSCC by repair welding following local or integral heat treatment.


Sign in / Sign up

Export Citation Format

Share Document