Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

2015 ◽  
Vol 71 ◽  
pp. 85-92 ◽  
Author(s):  
Aiping Wu ◽  
Zhihua Song ◽  
Kazuhiro Nakata ◽  
Jinsun Liao ◽  
Li Zhou
2019 ◽  
Vol 813 ◽  
pp. 404-410
Author(s):  
Hardik Vyas ◽  
Kush P. Mehta

In the present investigation, friction stir processing (FSP) is carried out with multi pass processing having 100 % overlap zone on the workpiece material of aluminum alloy 6061 with constant FSP parameters and varying multi pass processing conditions. Novel processing concept of multi pass FSP was performed with different rotation directions (such as clock wise and anti-clock wise directions) and processing directions (such as forward, reverse and revert directions). Surface inspection, macrographs and microstructures of the processed regions are evaluated and compared with each other. Multi-pass FSP with 100 % overlapping of two passes caused intense dynamic recrystallization and resulted in reduced grain size. Hardness of processed zone was found increased in case of two pass FSP. Minimum tensile strength was reported with double sided FSP compare to single pass and two pass FSPs. No major variations in tensile strength were reported in case of single pass and two pass FSPs.


Author(s):  
Xun Liu ◽  
Shuhuai Lan ◽  
Jun Ni

Friction stir welding (FSW) technique has been successfully applied to butt joining of aluminum alloy 6061-T6 to one type of advanced high strength steel (AHSS), transformation induced plasticity (TRIP) 780/800 with the highest weld strength reaching 85% of the base aluminum alloy. Mechanical welding forces and temperature were measured under various sets of process parameters and their relationships were investigated, which also helped explain the observed macrostructure of the weld cross section. Compared with FSW of similar aluminum alloys, only one peak of axial force occurred during the plunge stage. Three failure modes were identified during tensile tests of weld specimens, which were further analyzed based on the microstructure of joint cross sections. Intermetallic compound (IMC) layer with appropriate thickness and morphology was shown to be beneficial for enhancing the strength of Al–Fe interface.


Sign in / Sign up

Export Citation Format

Share Document