Strengthening of RC beams using steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC) and their strength predictions

2016 ◽  
Vol 100 ◽  
pp. 37-46 ◽  
Author(s):  
Shahid Iqbal ◽  
Ahsan Ali ◽  
Klaus Holschemacher ◽  
Thomas A. Bier ◽  
Abid A. Shah
Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 91
Author(s):  
Sallal R. Abid ◽  
Murali Gunasekaran ◽  
Sajjad H. Ali ◽  
Ahmed L. Kadhum ◽  
Thaar S. Al-Gasham ◽  
...  

The self-compacting concrete (SCC) was invented to overcome the compaction problems in deep sections, owing to its perfect workability characteristics. Steel fibers when used with SCC would affect the required fluidity characteristics but improve its impact resistance. In this research, an experimental work was conducted to evaluate the impact response of micro-steel fiber-reinforced SCC, under flexural impact. A 5.47 kg free-falling mass was dropped repeatedly from 100 mm height on the top center of 270 mm-length beam specimens. Eight mixtures with two design grades of 30 and 50 MPa were prepared to distinguish the normal and high-strength SCCs. The distinguishing variable for each design grade was the fiber content, where four volumetric contents of 0%, 0.5%, 0.75%, and 1.0% were used. The test results showed that the impact resistance and ductility were significantly improved due to the incorporation of micro-steel fibers. The percentage improvements were noticeably higher at failure stage than at cracking stage. For the 30 MPa mixtures, the maximum percentage improvements at cracking and failure stages were 543% and 836%, respectively. Weibull’s linear correlations with R2 values of 0.84 to 0.97 were obtained at the failure stage, which meant that the impact failure number followed the Wiebull distribution.


2012 ◽  
Vol 18 (31) ◽  
pp. 222-229
Author(s):  
Chunyakom Sivaleepunth ◽  
Toshimichi Ichinomiya ◽  
Shinichi Yamanobe ◽  
Tetsuya Kono ◽  
Naoki Sogabe ◽  
...  

Author(s):  
Sumith Vangara, S Siva Rama Krishna, Venu Malagavelli, K.Tarunkumar, A. Jagadish Babu

In this present study the durability characteristics of Steel fiber reinforced Self compacting concrete (SFRSCC) is determined for M30 and M40 grade concrete mixes. Along with durability strength and sorptivity is carried out and comparison is made with Plane self-compacting concrete (SCC) by chemical resistances, Initial Surface Absorption Test (ISAT). In the present study, the rational mix design procedure for self-compacting concrete is used. SCC mixes contains large quantity of powder (material whose parcel size is 0.125 mm) to maintain the plastic yield of the properties of fresh concrete as per the general guidelines for design of SCC mixes given in the EFNARC (2005). The present project consists of two phases. In the first phase, SCC mixes for different grades are developed without steel fibers and with steel fibers. The mechanical properties like compressive strength of the different grades were studied. In the second phase, based on the experimental results, durability properties were studied with the using of specimens of size 100 mm × 100 mm × 100 mm. Durability studies like Acid attack factors, Acid-Durability factors, Sulphate attack factors, Sorptivity are studied for the Plain SCC and steel Fiber Reinforced SCC and a comparison is made.


Sign in / Sign up

Export Citation Format

Share Document