scholarly journals Strength And Durability Properties Of Steel Fiber Reinforced Self Compacting Concrete

Author(s):  
Sumith Vangara, S Siva Rama Krishna, Venu Malagavelli, K.Tarunkumar, A. Jagadish Babu

In this present study the durability characteristics of Steel fiber reinforced Self compacting concrete (SFRSCC) is determined for M30 and M40 grade concrete mixes. Along with durability strength and sorptivity is carried out and comparison is made with Plane self-compacting concrete (SCC) by chemical resistances, Initial Surface Absorption Test (ISAT). In the present study, the rational mix design procedure for self-compacting concrete is used. SCC mixes contains large quantity of powder (material whose parcel size is 0.125 mm) to maintain the plastic yield of the properties of fresh concrete as per the general guidelines for design of SCC mixes given in the EFNARC (2005). The present project consists of two phases. In the first phase, SCC mixes for different grades are developed without steel fibers and with steel fibers. The mechanical properties like compressive strength of the different grades were studied. In the second phase, based on the experimental results, durability properties were studied with the using of specimens of size 100 mm × 100 mm × 100 mm. Durability studies like Acid attack factors, Acid-Durability factors, Sulphate attack factors, Sorptivity are studied for the Plain SCC and steel Fiber Reinforced SCC and a comparison is made.

2012 ◽  
Vol 2 (3) ◽  
Author(s):  
Farhad Aslani ◽  
Shami Nejadi

AbstractSteel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers, information is hardly available in this area. In this study, bond characteristics of deformed reinforcing steel bars embedded in SFRSCC is investigated secondly.


2021 ◽  
Vol 889 (1) ◽  
pp. 012064
Author(s):  
Anurag ◽  
S.K Singh

Abstract The objective of performing this study was to estimate the impact of replacement of natural aggregates (NAs) with the recycled demolition waste aggregates (rDWAs) on the sulphate resistance of steel fiber-reinforced self-compacting concrete (FRSCC). In this regard, 13 laboratory experiments were conducted and analyzed using central composite design (CCD) in combination with response surface methodology (RSM). The sulphate resistance was evaluated in the form of % reduction is compressive strength (CS) of the FRSCC samples after 28 days, 90 days and 120 days. It was revealed that after 28 days, 90 days and 120 days the % reduction in CS was 97%, 14.85% and 8.6% more than the control samples, respectively. Also, the % reduction in CS of the FRSCC samples showed a linear relation with both the process parameters i.e., % replacement of NAs with rDWAs and % dosage of steel fibers. The findings of this study are expected to encourage the reuse of rDWAs in FRSCC-based structures.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 91
Author(s):  
Sallal R. Abid ◽  
Murali Gunasekaran ◽  
Sajjad H. Ali ◽  
Ahmed L. Kadhum ◽  
Thaar S. Al-Gasham ◽  
...  

The self-compacting concrete (SCC) was invented to overcome the compaction problems in deep sections, owing to its perfect workability characteristics. Steel fibers when used with SCC would affect the required fluidity characteristics but improve its impact resistance. In this research, an experimental work was conducted to evaluate the impact response of micro-steel fiber-reinforced SCC, under flexural impact. A 5.47 kg free-falling mass was dropped repeatedly from 100 mm height on the top center of 270 mm-length beam specimens. Eight mixtures with two design grades of 30 and 50 MPa were prepared to distinguish the normal and high-strength SCCs. The distinguishing variable for each design grade was the fiber content, where four volumetric contents of 0%, 0.5%, 0.75%, and 1.0% were used. The test results showed that the impact resistance and ductility were significantly improved due to the incorporation of micro-steel fibers. The percentage improvements were noticeably higher at failure stage than at cracking stage. For the 30 MPa mixtures, the maximum percentage improvements at cracking and failure stages were 543% and 836%, respectively. Weibull’s linear correlations with R2 values of 0.84 to 0.97 were obtained at the failure stage, which meant that the impact failure number followed the Wiebull distribution.


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Sign in / Sign up

Export Citation Format

Share Document