scholarly journals Characterization of a magneto-active membrane actuator comprising hard magnetic particles with varying crosslinking degrees

2020 ◽  
Vol 195 ◽  
pp. 108921 ◽  
Author(s):  
Mina Lee ◽  
Taewoong Park ◽  
Chaemin Kim ◽  
Sung-Min Park
2012 ◽  
Vol 67 ◽  
pp. 20-27 ◽  
Author(s):  
José L. Corchero ◽  
Rosa Mendoza ◽  
Neus Ferrer-Miralles ◽  
Anna Montràs ◽  
Lluís M. Martínez ◽  
...  

2021 ◽  
Vol 892 ◽  
pp. 10-16
Author(s):  
Ismi Nurul ◽  
Syamsuddin Yanna ◽  
Adisalamun ◽  
Aulia Sugianto Veneza ◽  
Darmadi

In this study, iron removal was carried out by the adsorption process as a well-known method of removing heavy metal. Natural bentonite with magnetic properties in a monolithic form or Magnetite-Bentonite-based Monolith (MBM) adsorbent was used as an adsorbent to remove Iron (II) ion from the aqueous solution. The magnetic properties of adsorbents are obtained by adding magnetite (Fe3O4), which is synthesized by the coprecipitation process. The characterization of magnetic properties was performed using the Vibrating Sample Magnetometer (VSM). VSM results showed that the magnetic particles were ferromagnetic. Adsorption efficiency, isotherm model, and adsorption kinetics were investigated in a batch system with iron solution concentration varied from 2 to 10 mg/L and magnetite loading at 2% and 5% w/w. The highest removal efficiency obtained reached 89% with a 5% magnetite loading. The best fit to the data was obtained with the Langmuir isotherm (non-linear) with maximum monolayer adsorption capacity (Qo) at 5% magnetic loading MBM adsorbent is 0.203 mg/g with Langmuir constants KL and aL are 2.055 L/g and 10.122 L/mg respectively. The pseudo-first-order (non-linear) kinetic model provides the best correlation of the experimental data with the rate of adsorption (k1) with magnetite loading 2% and 5%, respectively are 0.024 min-1 and 0.022 min-1.


2008 ◽  
Vol 43 (5) ◽  
pp. 1112-1118 ◽  
Author(s):  
Sagrario M. Montemayor ◽  
L.A. García-Cerda ◽  
J.R. Torres-Lubián ◽  
O.S. Rodríguez-Fernández

2020 ◽  
Vol 3 (3) ◽  
pp. 803-811 ◽  
Author(s):  
Waisudin Badri ◽  
Mohamad Tarhini ◽  
Zineb Lgourna ◽  
Noureddine Lebaz ◽  
Hassan Saadaoui ◽  
...  

1997 ◽  
Vol 12 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Yukie Tokiwa ◽  
Kunihiro Kasamo ◽  
Kotaro Oka ◽  
Eiji Ohta ◽  
Tetsuya Sato

2018 ◽  
Vol 939 ◽  
pp. 147-152 ◽  
Author(s):  
Anil K. Bastola ◽  
Milan Paudel ◽  
Lin Li

This article delineates the characterization of the 3D printed MR elastomer through a forced vibration technique in the squeeze mode of operation. An anisotropic hybrid magnetorheological (MR) elastomer is developed via 3D printing. The 3D printed MR elastomer consists of three different materials; magnetic particles, magnetic particles carrier fluid, and an elastomer. MR fluid filaments are encapsulated layer-by-layer within the elastomer matrix using a 3D printer. When a moderately strong magnetic field is applied, the 3D printed MR elastomer changes its elastic and damping properties. The hybrid 3D printed MR elastomer also shows an anisotropic behavior when the direction of the magnetic field is changed with respect to the orientation of the printed filaments. The relative MR effect is higher when the applied magnetic field is parallel to the orientation of the printed filaments. The maximum change in the stiffness is observed to be 65.2% when a magnetic field of 500 mT is applied to the MR elastomer system. This result shows that the new method, 3D printing could produce anisotropic hybrid MR elastomers or possibly other types.


2006 ◽  
Vol 306-308 ◽  
pp. 1115-1120 ◽  
Author(s):  
Bee Chin Ang ◽  
Iskandar Idris Yaacob

Magnetic iron oxides nanoparticles were synthesized at room temperature using water in oil microemulsion process. This microemulsion system was prepared using HTAB (surfactant), noctane (oil), 1-butanol (cosurfactant) and aqueous salt solution of Fe2+ and OH-. The microemulsions were used as microreactors for controlling the growth of the particles. The nanoparticles were characterized using TGA, XRD, TEM, BET, DLS and AGM. X-ray diffraction analysis revealed that the magnetic nanoparticles could be directly formed at room temperature. It also showed that the particles were either maghemite (γ-Fe2O3) or magnetite (Fe3O4). TGA thermogram showed two significant weight losses at around 100°C and 250° C, which were caused by dehydration and burn off of the surfactant. The surface area of the magnetic particles measured using gas absorption and desorption technique was 105.43m2/g, which indicated the presence of particles of 21nm in length. The size measured by TEM and DLS was 105nm and 107.9nm respectively due to the formation of large aggregated clusters. The sample also showed strong magnetic properties with the value of Ms of 11.2 emu/g.


Sign in / Sign up

Export Citation Format

Share Document