scholarly journals In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion

2020 ◽  
Vol 194 ◽  
pp. 108966 ◽  
Author(s):  
Peng Chen ◽  
Chao Yang ◽  
Sheng Li ◽  
Moataz M. Attallah ◽  
Ming Yan
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3463
Author(s):  
Yangyiwei Yang ◽  
Carlos Doñate-Buendía ◽  
Timileyin David Oyedeji ◽  
Bilal Gökce ◽  
Bai-Xiang Xu

The control of nanoparticle agglomeration during the fabrication of oxide dispersion strengthened steels is a key factor in maximizing their mechanical and high temperature reinforcement properties. However, the characterization of the nanoparticle evolution during processing represents a challenge due to the lack of experimental methodologies that allow in situ evaluation during laser powder bed fusion (LPBF) of nanoparticle-additivated steel powders. To address this problem, a simulation scheme is proposed to trace the drift and the interactions of the nanoparticles in the melt pool by joint heat-melt-microstructure–coupled phase-field simulation with nanoparticle kinematics. Van der Waals attraction and electrostatic repulsion with screened-Coulomb potential are explicitly employed to model the interactions with assumptions made based on reported experimental evidence. Numerical simulations have been conducted for LPBF of oxide nanoparticle-additivated PM2000 powder considering various factors, including the nanoparticle composition and size distribution. The obtained results provide a statistical and graphical demonstration of the temporal and spatial variations of the traced nanoparticles, showing ∼55% of the nanoparticles within the generated grains, and a smaller fraction of ∼30% in the pores, ∼13% on the surface, and ∼2% on the grain boundaries. To prove the methodology and compare it with experimental observations, the simulations are performed for LPBF of a 0.005 wt % yttrium oxide nanoparticle-additivated PM2000 powder and the final degree of nanoparticle agglomeration and distribution are analyzed with respect to a series of geometric and material parameters.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3095
Author(s):  
Florian Huber ◽  
Dominic Bartels ◽  
Michael Schmidt

High entropy or multi principal element alloys are a promising and relatively young concept for designing alloys. The idea of creating alloys without a single main alloying element opens up a wide space for possible new alloy compositions. High entropy alloys based on refractory metals such as W, Mo, Ta or Nb are of interest for future high temperature applications e.g., in the aerospace or chemical industry. However, producing refractory metal high entropy alloys by conventional metallurgical methods remains challenging. For this reason, the feasibility of laser-based additive manufacturing of the refractory metal high entropy alloy W20Mo20Ta20Nb20V20 by laser powder bed fusion (PBF-LB/M) is investigated in the present work. In-situ alloy formation from mixtures of easily available elemental powders is employed to avoid an expensive atomization of pre-alloyed powder. It is shown that PBF-LB/M of W20Mo20Ta20Nb20V20 is in general possible and that a complete fusion of the powder mixture without a significant number of undissolved particles is achievable by in-situ alloy formation during PBF-LB/M when selecting favorable process parameter combinations. The relative density of the samples with a dimension of 6 × 6 × 6 mm3 reaches, in dependence of the PBF-LB/M parameter set, 99.8%. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) measurements confirm the presence of a single bcc-phase. Scanning electron microscopy (SEM) images show a dendritic and/or cellular microstructure that can, to some extent, be controlled by the PBF-LB/M parameters.


2020 ◽  
Vol 360 ◽  
pp. 998-1005 ◽  
Author(s):  
Elodie Vasquez ◽  
Pierre-François Giroux ◽  
Fernando Lomello ◽  
Matthieu Nussbaum ◽  
Hicham Maskrot ◽  
...  

Materialia ◽  
2021 ◽  
pp. 101308
Author(s):  
Fengxia Wei ◽  
Siyuan Wei ◽  
Kwang Boon Lau ◽  
Wei Hock Teh ◽  
Jing Jun Lee ◽  
...  

2018 ◽  
Vol 224 ◽  
pp. 22-25 ◽  
Author(s):  
A. Piglione ◽  
B. Dovgyy ◽  
C. Liu ◽  
C.M. Gourlay ◽  
P.A. Hooper ◽  
...  

2022 ◽  
Vol 141 ◽  
pp. 107430
Author(s):  
Hao Wang ◽  
Junquan Chen ◽  
Hailu Luo ◽  
Di Wang ◽  
Changhui Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document