Tribological behavior of Zirconia-Toughened Alumina (ZTA) against Ti6Al4V under different bio-lubricants in hip prosthesis using experimental and finite element concepts

2021 ◽  
pp. 131107
Author(s):  
S. Shankar ◽  
R. Nithyaprakash ◽  
G. Abbas ◽  
R. Naveen kumar ◽  
Alokesh Pramanik ◽  
...  
2021 ◽  
Vol 63 (5) ◽  
pp. 470-473
Author(s):  
Subramaniam Shankar ◽  
Rajavel Nithyaprakash ◽  
Balasubramaniam Rajasulochana Santhosh

Abstract Reduction in wear of artificial bio-implants results in the release of a lesser amount of wear particles into the blood stream. This paper focuses on analyzing the tribological behavior of ceramic and polyethylene bio-materials experimentally. Four different biomaterials namely Zirconia, Silicon Nitride, UHMWPE (ultra high molecular weight polyethylene) and PEEK (polyether ether ketone) are investigated for friction and wear coefficients using a pin on disc (PoD) tribometer. Alumina (Al2O3) is chosen as the disc material. Polyethylene based UHMWPE and PEEK are used as a pin material with the hemispherical end, while, Zirconia and Silicon Nitride ceramic materials are used in the form of spherical ball. 0.9 % NaCl (saline solution) is used as a lubricant medium. Zirconia showed a better reduction in friction and wear coefficient characteristics under lubrication conditions when compared with polyethylene and other ceramic materials. The estimated friction and wear coefficients would be helpful for surgeons and academicians to choose better wear-resistant bio-compatible materials for effectively design hip prosthesis. The present study compared the tribological behaviors of ceramic materials Si3N4 and ZrO2 and polyethylene materials PEEK and UHMWPE with a ceramic counterpart Al2O3 disc. In the lubrication case, ZrO2 showed a better reduction in friction and wear characteristics while in the dry case UHMWPE showed lesser wear characteristics.


2001 ◽  
Author(s):  
Masaru Higa ◽  
Ikuya Nishimura ◽  
Hiromasa Tanino ◽  
Yoshinori Mitamura

Abstract The three-dimensional shape optimization of cemented total hip arthroplasty (THA) was introduced in this paper. The P-version Finite Element Method (FEM) combined with an optimization procedure was used to minimize the peak stress in the bone cement near the tip of the implant. Six-design variables were used in this study. Each variable represents the dimension of the medial-lateral width and anterior-posterior width of the three levels (proximal, distal and middle) of cross sectional area of the prosthesis. The results of the design optimization showed considerable reduction in stress concentration compared to the initial design that is currently used clinically.


2005 ◽  
Vol 09 (01) ◽  
pp. 21-33
Author(s):  
Poon-Ung Chieng ◽  
Ching-I Chen ◽  
Chi-Chang Lin ◽  
Ching-Lin Tsai ◽  
Po-Quang Chen

Background: Current total hip prosthesis lack an accurate individualized finite element model to assure an accurate fit, and further require amputation of a possibly healthy femoral neck. Methods: This research presents a new methodology for performing an automated three-dimensional finite element meshing for a new type of total hip prosthesis. The stress analysis for this new design, known as Non-stemmed Anatomical Total Hip Prosthesis, is based on the methodology proposed here. The merit of this method is that the automated meshing process can be produced by using ANSYS software alone, without the need for a complicated, self-developed meshing interface program. Results: This new methodology provides a smooth boundary around the contour of the femur and the interface between the femur and the Non-stemmed Anatomical Total Hip Prosthesis, as well as avoiding additional complications. This newly designed prosthesis involves minimal modification of the intact femoral neck alignment after total hip replacement, provided that the femoral neck is still healthy. The main body of this new prosthesis is a conical-shaped mask that tightly embraces the femoral neck. The bottom skirt of this mask contacts the greater and lesser trochanter in such a way that maintains the mask in the desired position using a screw through the axis of the femoral neck. Finite element stress analysis is performed to compare the stress distribution of the intact femur and the femur after implantation of the Non-stemmed Anatomical Total Hip Prosthesis. Conclusions: Hopefully, this new prosthesis will be the method of choice for patients who have healthy femoral necks, but sick femoral heads. Further research can focus on applying this new methodology to other bone structures. Level of Evidence: Therapeutic study, Level IV.


Author(s):  
M. C. Gaspar ◽  
A. Mateus ◽  
C. Pereira ◽  
F. V. Antunes

In this work a Bombelli cementless isoelastic RM total hip prosthesis was considered. It was implanted over a course of 14 years on the patient and studied subsequently to its chirurgical replacement. Computed Tomography, radiographies and 3-D laser scanning were used to assess the prosthesis geometry, while the original femur anatomy was modeled based on 2-D radiographies taken at different stages of the in-vivo implant of the prosthesis. A finite element model was developed, based on the generated 3-D geometrical model, considering a linear elastic behavior and typical loading conditions. This analysis allowed determining stress and strain fields throughout bone-prosthesis contact surface and critical areas in terms of micromovements. The developed procedure, consisting of 3-D scanning, generation of geometrical 3-D models and finite element analysis, results in a powerful tool to follow-up and predict failure mechanisms in hip joint prosthesis.


2001 ◽  
Vol 17 (1-2) ◽  
pp. 11-18 ◽  
Author(s):  
Chi-Chung Hu ◽  
Jiann-Jong Liau ◽  
Chen-Yu Lung ◽  
Chun-Hsiung Huang ◽  
Cheng-Kung Cheng

2007 ◽  
Author(s):  
Hongqiang Guo ◽  
Dichen Li ◽  
Qin Lian ◽  
Xiang Li ◽  
Zhongmin Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document