NSGA-II Approach for Multi- Objective Optimization of Wire Electrical Discharge Machining Process Parameter on Inconel 718

2017 ◽  
Vol 4 (2) ◽  
pp. 2194-2202 ◽  
Author(s):  
Anshuman Kumar ◽  
Himadri Majumder ◽  
K. Vivekananda ◽  
K.P. Maity
2019 ◽  
Vol 18 (03) ◽  
pp. 339-362 ◽  
Author(s):  
Anshuman Kumar ◽  
K. Vivekananda ◽  
Kumar Abhishek

Inconel 718 is a nickel-based superalloy having high strength and low thermal conductivity. Due to its properties, wire electrical discharge machining has been selected. The paper reports an experimental investigation of Inconel 718 using zinc-coated brass wire electrode. Based on [Formula: see text], Box-Behnken design of response surface methodology has been adopted to estimate the effect of process parameter on the machining responses. Four controllable process parameters (viz., wire tension, wire speed, discharge current and pulse-on time) vary, each at three discrete levels, between parametric domains. The following machining responses, in terms of material removal rate (MRR), surface roughness ([Formula: see text]) and corner deviation ([Formula: see text]), have been investigated. Finally, an evolutionary computation method has been used based on non-dominated sorting genetic algorithm (NSGA-II) in order to find out the optimal set of solutions for rough-cutting. Experimental data have been used to develop regression models to optimize the process. The adequacy of the developed mathematical model has also been tested by the analysis of variance results. Pareto-optimal settings obtained through NSGA-II have been ranked by gray relation analysis to identify the best optimal set of solutions to avoid lengthiness and impreciseness in the judgment. Confirmation tests have been conducted for optimum machining parameter from the set of Pareto-optimal solutions for proving betterment.


The growing demand for the use of high strength to weight alloys in industries for manufacturing complex structures challenges the machinability of such advanced materials. In the present investigation, the machinability of SiC particle reinforced Al 2124 composite was studied on Wire electrical discharge machining (WEDM). The process parameters namely pulse on-time (Ton), pulse off time (Toff), peak current (IP), and servo voltage (SV) were optimized by utilizing the central composite design layout. The output responses such as kerf and material removal rate (MRR) were studied in detail. The single and multi-objective optimization was studied for a combination effect using Derringer’s desirability approach and Genetic Algorithm (GA). The experimental and predicted values for each response were validated at the optimized condition. The experimental results were found in line with the predicted values. Multi objective optimization of kerf and MRR by GA showing better result compared to RSM.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 915-917
Author(s):  
Jan Burek ◽  
Robert Babiarz ◽  
Marcin Płodzień ◽  
Jarosław Buk

The article presents the effect of electrode infeed in finishing machining of disk fir tree slots made of Inconel 718 alloy on shape accuracy and surface roughness in WEDM (wire electrical discharge machining).


Sign in / Sign up

Export Citation Format

Share Document