scholarly journals Multi-Objective Optimization of Wire Electrical Discharge Machining of AL 2124/SIC Composite

The growing demand for the use of high strength to weight alloys in industries for manufacturing complex structures challenges the machinability of such advanced materials. In the present investigation, the machinability of SiC particle reinforced Al 2124 composite was studied on Wire electrical discharge machining (WEDM). The process parameters namely pulse on-time (Ton), pulse off time (Toff), peak current (IP), and servo voltage (SV) were optimized by utilizing the central composite design layout. The output responses such as kerf and material removal rate (MRR) were studied in detail. The single and multi-objective optimization was studied for a combination effect using Derringer’s desirability approach and Genetic Algorithm (GA). The experimental and predicted values for each response were validated at the optimized condition. The experimental results were found in line with the predicted values. Multi objective optimization of kerf and MRR by GA showing better result compared to RSM.

2016 ◽  
Vol 15 (02) ◽  
pp. 85-100 ◽  
Author(s):  
P. C. Padhi ◽  
S. S. Mahapatra ◽  
S. N. Yadav ◽  
D. K. Tripathy

The present work is aimed at optimizing the cutting rate (CR), surface roughness (Ra) and dimensional deviation (DD) in wire electrical discharge machining (WEDM) of EN-31 steel considering various input parameters such as pulse-on-time, pulse-off-time, wire tension, spark gap set voltage and servo feed. A face centered central composite design of response surface methodology (RSM) has been adopted to develop the empirical model for the responses. It is often desired to obtain a single parameter setting that can decrease Ra and DD and increase CR simultaneously. Since the responses are conflicting in nature, it is difficult to obtain a single combination of cutting parameters satisfying all the objectives in any one solution. The optimum search of the machining parameter values for maximization of CR and minimization of Ra and DD are formulated as a multi-objective, multi-variable, nonlinear optimization problem using genetic algorithm weighted sum method to evaluate the performance.


Author(s):  
T Vijaya Babu ◽  
B Subbaratnam

WEDM (Wire Electrical discharge machining) is a nonconventional machining processes used in complicated shapes with high accuracy which are not possible with other conventional methods .Stainless steel 304 is used in present experimental work. Experiments are completed using Taguchi’s method with L9 orthogonal array .The aim of this work is to optimize the WEDM process parameters by considering input parameters are pulse on time , pulse off time ,peak current and wire feed and experiments are conducted with help of input parameters at three levels and response output parameters are MRR (Material removal Rate) and Surface Roughness (SR).Setting of parameters using by Taguchi’s method.


2020 ◽  
Vol 8 (5) ◽  
pp. 3045-3052

Wire Electrical Discharge Machining (WEDM) is a widely used non-traditional machining process used for machining of hard and difficult-to-machine materials. Proper selection of machining parameters in WEDM is required for better output performance, such as Material Removal Rate (MRR), Wire Wear Rate (WWR) and Surface Roughness (SR) etc. In the present paper, Pulse ON time, Pulse OFF time, Peak Current, Spark Voltage, Wire Feed and Wire Tension were taken as the input parameters to optimize MRR, WWR and SR. A set of 27 experiments were performed as per Taguchi Design. A Fuzzy model has been proposed to select the optimum values of machining parameters. The proposed fuzzy model was found to predict the experimental values with more than 90 percent accuracy.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


2015 ◽  
Vol 760 ◽  
pp. 551-556 ◽  
Author(s):  
Oana Dodun ◽  
Laurenţiu Slătineanu ◽  
Margareta Coteaţă ◽  
Vasile Merticaru ◽  
Gheorghe Nagîţ

Wire electrical discharge machining is a machining method by which parts having various contours could be detached from plate workpieces. The method uses the electrical discharges developed between the workpiece and the wire tool electrode found in an axial motion, when in the work zone a dielectric fluid is recirculated. In order to highlight the influence exerted by some input process factors on the surface roughness parameter Ra in case of a workpiece made of an alloyed steel, a factorial experiment with six independent variables at two variation levels was designed and materialized. As input factors, one used the workpiece thickness, pulse on time, pulse off-time, wire axial tensile force, current intensity average amplitude defined by setting button position and travelling wire electrode speed. By mathematical processing of the experimental results, empirical models were established. Om the base of a power type empirical model, graphical representations aiming to highlight the influence of some input factors on the surface roughness parameter Ra were achieved. The power type empirical model facilitated establishing of order of factors able to exert influence on the surface roughness parameter Ra at wire electrical discharge machining.


2020 ◽  
Vol 998 ◽  
pp. 55-60
Author(s):  
Jurapun Phimoolchat ◽  
Apiwat Muttamara

This paper focused on Grey relational analysis (GRA) to optimize EDM parameters through multi-objective optimization for Al2024 aluminum and electrode graphite ISO-63 was used as a cutting tool. The process parameters pulse on time, duty factor, pulse current and open voltage. Performance characteristics examined included material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Taguchi’s 27 experimental designs, often called an orthogonal array (OA), was utilized to ignore interaction and concentrate on main effect estimation. GRA was performed to optimize input parameters levels. Results were that MRR increased from 35.00 to 35.11 mm3/min, EWR decreased from 11.63 to 10.89 mm3/min, and SR decreased from 5.01 to 4.97 μm. Taguchi and GRA resulted in clear improvements in MRR, EWR, and SR.


2014 ◽  
Vol 592-594 ◽  
pp. 416-420 ◽  
Author(s):  
Singaravelu D. Lenin ◽  
A. Uthirapathi ◽  
Ramana Reddy P.S. Venkata ◽  
Muthukannan Durai Selvam

The present paper describes the influence of pulse-on-time on performance features such as Metal Removal Rate (MRR), Kerf width, Surface Roughness (SR) on cutting Titanium alloy (Ti-6Al-4V) in wire electrical discharge machining (WEDM) using zinc coated brass wire. The deionised water is used as dielectric fluid. The process parameters such as wire tension, wire speed, flushing pressure, discharge current, sparking voltage and pulse off time have kept constant at appropriate values throughout the experiment and the pulse on time is varied at nine different intervals. It was found that pulse-on-time is the most significant factor which greatly influences MRR, kerf width, and SR. It was also observed that taper at the end of cutting zone which is unavoidable occurrence for the machined part. This is due to the erosion of wire material. The surface roughness increases with increase in pulse on time also with higher rate of MRR.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2011 ◽  
Vol 383-390 ◽  
pp. 6695-6703 ◽  
Author(s):  
Abolfazl Golshan ◽  
Soheil Gohari ◽  
Ayob Amran

In this study, the appropriate input parameters for achieving minimum surface roughness and high material removal rate are selected for wire electrical discharge machining of cold-work steel 2601. Mathematical modeling acquired by experimental result analysis is used to find the relation between input parameters including electrical current, gap voltage, open-circuit voltage and pulse-off time and output parameters. Subsequently, with exploitation of variance analysis, importance and effective percentages of each parameter are studied. The combination of optimum machining parameters is acquired using the analysis of ratios of signal-to-noise. Finally, according to multiple-objective optimization, outputs acquired from Non-dominated Sorting Genetic Algorithm led in achieving appropriate models. The optimization results showed suggested method has a high performance in problem solving.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document