Experimental investigation of heat transfer from an electronic device using graphene nano fluid

2018 ◽  
Vol 5 (9) ◽  
pp. 20669-20678
Author(s):  
L.K. Babith Lawrance ◽  
R.Rohith Renish
2012 ◽  
Vol 622-623 ◽  
pp. 806-810
Author(s):  
M.R. Naghavi ◽  
M.A. Akhavan-Behabadi ◽  
M. Fakoor Pakdaman

An experimental investigation has been carried out to study the heat transfer and pressure drop characteristics of MWCNT-Base oil nano-fluid flow inside horizontal rectangular channels under constant wall temperature. The temperature of the tube wall was kept constant at around 95 °C to have isothermal boundary condition. The required data were acquired for laminar fully developed flow inside round and rectangular channels. The effect of different parameters such as mass velocity, aspect ratio of rectangular channels and nano-particles concentration on heat transfer coefficient and pressure drop of the flow is studied. Observations show that the heat transfer performance is improved as the aspect ratio is increased. Also, increasing the aspect ratio will result in the pressure drop increasing. In addition, the heat transfer coefficient as well as pressure drop is increased by using nano-fluid instead of base fluid. Furthermore, the performance evaluation of the two enhanced heat transfer techniques studied in this investigation showed that applying rectangular channels instead of the round tube is a more effective way to enhance the convective heat transfer compared to the second method which is using nano-fluids instead of the base fluid.


2021 ◽  
Vol 239 ◽  
pp. 00022
Author(s):  
Muhammad Shoaib Rafiq ◽  
Hafiz Muhammad Ali ◽  
Amir Sultan

Coolant plays important characteristic in automobile industry to prevent failure and damage by balancing the temperature. Due to this approach, coolants are being used as new thermal fluid to study the heat transfer coefficient performance. This study consists of an experimental investigation of internal convective heat transfer of 50:50 Water-Ethylene Glycol based Nano-fluid through a copper tube of 18mm external diameter and 16.5mm internal diameter and a test section of 1m in a fully turbulent regime. Total convective heat transfer coefficient of Nano fluid at three different volumetric concentrations of nanoparticles is estimated. Local convective heat transfer at eight different points along the tube at varying Reynolds number is also determined. At 0.15% volumetric concentration of SiO2 Nanoparticles (NPS) 29% increment in convective heat transfer coefficient (CHT) is observed. The decrease in the heat transfer rate is observed with changing distance axially. Particles disorganized movement of NPs and undulation in the fluid and increased in thermal conductivity of Nano fluid can be possible reason for extra ordinary change in heat transfer.


Author(s):  
Qasim Saleh Mahdi ◽  
Sahar A. Fattah ◽  
Firas Juma

Experimental investigation of heat transfer enhancement in heat transfer coefficient of shell and helical coil tube heat exchanger with and without addition nanofluid is carried out in the present work. Experimental work is included two parts: the first one is included design of helical coil heat exchanger with optimum curvature ratio (17), an optimum helical coil pitch has been used to study the heat transfer coefficient without nanofluid. The second part is included studying the effect of using (Oxide Titanium TiO2) nanoparticle powder with 20 nm diameter is dispersed in distilled water with different volume concentrations (0.2, 0.4, 0.6, and 0.8) % by volume on heat transfer coefficient. The experimental results showed that, when nanofluid was used there is an increase in heat transfer coefficient and thermal conductivity by (20) %. An empirical correlation has been found to show the variation of Nusselt number with Dean number by using nano fluid with error of (±5%).


Sign in / Sign up

Export Citation Format

Share Document