Characterization of mechanical and thermal properties of high strength glass epoxy and rayon carbon phenolic composites

2018 ◽  
Vol 5 (13) ◽  
pp. 26898-26903 ◽  
Author(s):  
C. Sharada Prabhakar ◽  
P. Ramesh Babu
2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2021 ◽  
Vol 320 ◽  
pp. 181-185
Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Irina Shvetsova ◽  
Aleksandrs Korjakins

Because of low calcination temperature, magnesia binders are attributed as low-CO2 emission materials that can benefit the environment by reducing the energy consumption of building sector. Portland cement in different areas of construction can be replaced by magnesia binder which do not require autoclave treatment for hardening, it has low thermal conductivity and high strength properties. Magnesium-based materials are characterized by decorativeness and ecological compatibility.The experimental part of this research is based on the preparation of magnesia binders by adding raw materials and calcinated products and caustic magnesia. The aim of this study was to obtain low-CO2 emission and eco-friendly material using local dolomite waste materials, comparing physical, mechanical, thermal properties of magnesium binders.


2014 ◽  
Vol 343 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Reinaldo Yoshio Morita ◽  
Juliana Regina Kloss ◽  
Ronilson Vasconcelos Barbosa

Author(s):  
Rui Dai ◽  
Beomjin Kwon ◽  
Qiong Nian

Abstract Stochastic foam with hierarchy order pore structure possesses distinguished physical properties such as high strength to weight ratio, super lightweight, and extremely large specific area. These exceptional properties make stochastic foam as a competitive material for versatile applications e.g., heat exchangers, battery electrodes, automotive components, magnetic shielding, catalyst devices and etc. Recently, the more advanced hollow cellular (shellular) architectures with well-developed structure connections are studied and expected to surpass the solid micro/nanolattices. However, in terms of theoretical predicting and studying of the cellular foam architecture, currently no systematic model can be utilized to accurately capture both of its mechanical and thermal properties especially with hollow struts due to complexity induced by its stochastic and highly reticulate nature. Herein, for the first time, a novel packing three-dimensional (3D) hollow dodecahedron (HPD) model is proposed to simulate the cellular architecture. An electrochemical deposition process is utilized to manufacture the metallic foam with hollow struts. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. HPD model is proved to accurately capture both the topology and the physical properties of stochastic foam at the similar relative density. Particularly, the proposed model makes it possible to readily access and track the physical behavior of stochastic foam architecture. Accordingly, this work will also offer inspiration for designing an efficient foam for specific applications.


Author(s):  
Siddhartha Kosti

This chapter deals with the modelling of nanomaterial and nanocomposite mechanical and thermal properties. Enrichment in the technology requires materials having higher thermal properties or higher structural properties. Nanomaterials and nanocomposites can serve this purpose accurately for aerospace or thermal applications and structural applications respectively. The thermal system requires materials having high thermal conductivity while structural system requires materials having high strength. Selection of the material for particular application is very critical and requires knowledge and experience. Al, Cu, TiO2, Al2O3, etc. are considered for thermal applications while epoxy-glass, FRP, etc. are considered for structural applications. Modelling of these nanomaterials and nanocomposites is done with the help of different mathematical models available in the literature. Results show that addition of the nanoparticle/composite in the base material can enhance the thermal and structural properties. Results also show that amount of weight percentage added also affects the properties.


Author(s):  
Siddhartha Kosti

This chapter deals with the modelling of nanomaterial and nanocomposite mechanical and thermal properties. Enrichment in the technology requires materials having higher thermal properties or higher structural properties. Nanomaterials and nanocomposites can serve this purpose accurately for aerospace or thermal applications and structural applications respectively. The thermal system requires materials having high thermal conductivity while structural system requires materials having high strength. Selection of the material for particular application is very critical and requires knowledge and experience. Al, Cu, TiO2, Al2O3, etc. are considered for thermal applications while epoxy-glass, FRP, etc. are considered for structural applications. Modelling of these nanomaterials and nanocomposites is done with the help of different mathematical models available in the literature. Results show that addition of the nanoparticle/composite in the base material can enhance the thermal and structural properties. Results also show that amount of weight percentage added also affects the properties.


2014 ◽  
Vol 215 (8) ◽  
pp. 716-724 ◽  
Author(s):  
Jenny Bandomir ◽  
André Schulz ◽  
Satomi Taguchi ◽  
Lena Schmitt ◽  
Hiroyuki Ohno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document