Mechanical and thermal characterization of grafted PP-NCC nanocomposites

2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 866 ◽  
Author(s):  
Alexandre L. Pereira ◽  
Mariana D. Banea ◽  
Jorge S.S. Neto ◽  
Daniel K.K. Cavalcanti

The main objective of this work was to investigate the effect of hybridization on the mechanical and thermal properties of intralaminar natural fiber-reinforced hybrid composites based on sisal. Ramie, sisal and curauá fibers were selected as natural fiber reinforcements for the epoxy matrix based composites, which were produced by the hand lay-up technique. Tensile, flexural and impact tests were carried out according to American society for testing and materials (ASTM) standards to characterize the hybrid composites, while differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to evaluate the thermal properties. It was found that the mechanical properties are improved by hybridization of sisal based composites. The thermal analysis showed that the hybridization did not significantly affect the thermal stability of the composites. A scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. The SEM images showed a brittle fracture of the matrix and fiber breakage near the matrix.


2020 ◽  
Vol 54 (18) ◽  
pp. 2489-2504 ◽  
Author(s):  
Ulas Can ◽  
Cevdet Kaynak

The main purpose of this study was to investigate mechanical and thermal performance of polylactide specimens against UV irradiation; first when only adding benzotriazole benzotriazole-based organic UV absorber (UVA), micro (200 nm) and nano (50 nm) sized titania (TiO2) particles alone, and then to reveal possible synergism when they are added together. Compounds were prepared by twin-screw extruder melt mixing, while the 2 mm thick specimens were shaped by compression molding. Specimens were exposed to UV irradiation under fluorescent lamps (UVB-313) with 0.50 W/m2 for the periods of 12 and 24 days. Changes in the performance of UV irradiated specimens were evaluated in terms of % weight loss, changes in color and chemical structure, including the decreases in the mechanical and thermal properties. Various tests and analysis revealed that synergistic benefits of using micro and nano TiO2 particles together with benzotriazole-type UVA were not only due to the effective stiffening, strengthening and toughening actions of titania particles, but also due to their very significant “UV screening” actions absorbing the photons of the UV irradiation, thus decreasing the degree of the detrimental photodegradation reactions leading to chain scissions in their PLA matrix.


2008 ◽  
Vol 47-50 ◽  
pp. 536-539 ◽  
Author(s):  
H. Ku ◽  
F. Cardona ◽  
D. Rogers ◽  
A. Vandenbroucke

Low cost composite materials are widely used in civil and structural engineering applications. This project uses EPON to plasticize a commonly used resin, epoxy resin to lower the cost of the composite and to find out the mechanical and thermal properties of the plasticized epoxy resin to see if it is suitable for the said applications. Three point bending tests were carried out to evaluate the flexural properties of the plasticized resins. Differential scanning calorimetry and dynamic mechanical thermal analysis are used to evaluate the thermal properties of the plasticized epoxy resin. The study with epoxy and EPON showed that the mechanical properties of the epoxy composite were lowered but its ability to dissipate energy increased because of its improved thermal properties. As EPON is much cheaper that epoxy resin, the composite produced is therefore cheaper and provided the service requirements were not so demanding, it can be used in the said applications.


2012 ◽  
Vol 527 ◽  
pp. 44-49
Author(s):  
Remo Merijs Meri ◽  
Janis Zicans ◽  
Tatjana Ivanova ◽  
Rita Berzina ◽  
Guntis Japins ◽  
...  

Structure as well as mechanical and thermal properties of the nanocomposites based on recycled polyethylene terephthalate (RPET) are investigated. 1, 2 and 5 wt. % of unmodified montmorillonite nanoclay (MMT) were introduced in the RPET matrix by melt compounding in a twin screw extruder. Results of the investigations testify that optimum content of MMT for modification of RPET is between 1 and 2 wt. %. Up to this nanofiller weight content, the most rapid increase of stiffness, strength and impact toughness is observed. Besides it, at this nanofiller weight content the investigated composite have somewhat improved thermal resistance. It is demonstrated that the improvement of these properties is due to better distribution of MMT in the polymer matrix. At higher nanofiller content, the undesirable effects of the nanofiller agglomeration becomes more important.


2019 ◽  
pp. 089270571987667 ◽  
Author(s):  
Carlos Ivan Ribeiro de Oliveira ◽  
Marisa Cristina Guimarães Rocha ◽  
Joaquim Teixeira de Assis ◽  
Ana Lúcia Nazareth da Silva

The aim of this study is to evaluate the effect of some experimental variables such as the content of styrene–ethylene–butylene–styrene (SEBS) and talc, processing conditions and mixing protocol on the properties of polypropylene (PP). To achieve this objective, PP/SEBS blends and PP/SEBS/talc composites were processed in a corotating twin-screw extruder. A masterbatch of PP/talc was prepared before the extrusion of PP/SEBS/talc composites. The morphology of blends and composites was evaluated by scanning electron microscopy, which revealed the dispersion of small rubber droplets in the PP matrix. Moreover, the micrographs also showed that SEBS and talc particles were uniformly dispersed and distributed in the polymer matrix. Results of thermal properties showed that talc had a nucleating effect, which promoted the increase of both PP crystallization temperature and crystallinity degree. The incorporation of talc in PP/SEBS blends led to an expressive increase in the impact resistance by 70% as compared with the reference blend: PP/SEBS 80/20% (w/w). This result reveals that although the PP/SEBS/talc composites showed a separated morphology, the good dispersion and distribution of this mineral filler in the polymers contributed to avoid crack propagation and increase the impact properties. The tensile properties in the elastic region were not significantly affected.


2019 ◽  
Vol 25 (4) ◽  
pp. 433-440
Author(s):  
Shiuh Chuan HER ◽  
Lei Yao CHEN

Graphene with high electric and thermal conductivities has been widely used as reinforced filler. In this study, graphene loadings in the range between 0.3 and 1.0 wt.% were added to the epoxy to fabricate the nanocomposites. The mechanical and thermal properties of nanocomposites were characterized using tensile test and differential scanning calorimeter (DSC), respectively. Experimental results show that the elastic modulus, yield strength, ultimate strength and glass transition temperature of the graphene reinforced epoxy are increasing with the increase of the graphene, while the fracture strain and toughness are decreasing with the increase of the graphene. Scanning electron microscope (SEM) was employed to investigate the dispersion and separation of graphene in the epoxy based matrix. The SEM images depict that graphene is well dispersed resulting in a significant improvement of the mechanical and thermal properties of the nanocomposites. The mechanical properties and thermal stability of epoxy nanocomposites with graphenes and multi-walled carbon nanotubes additives were then compared. Experimental results show that nanocomposite with graphene additives outperform the multi-walled carbon nanotube additives.


2014 ◽  
Vol 1025-1026 ◽  
pp. 241-245 ◽  
Author(s):  
Ľudmila Dulebová ◽  
Emil Spišák ◽  
Branislav Duleba ◽  
František Greškovič ◽  
Tomasz Garbacz

The paper presents the impact of the use of fillers on the mechanical properties of composites with polymeric matrix from polypropylene (PP). Two main types of mineral fillers - talc and calcium carbonate - were used for experiments. PP composites of different percentage filler in matrix PP were compounded with twin-screw extruder and then injection molding. Properties of composites were investigated by tensile test and thermal analysis. Tensile strength was performed to determine and compare the mechanical properties of the unfilled PP and filled PP with various percentages of fillers. Thermal analysis by thermogravimetric was performed on the tested materials - weight loss, glass transition temperature, thermal decomposition, melting temperature.


Author(s):  
Abdel-Hamid I. Mourad ◽  
Omar G. Ayad ◽  
Ashfakur Rahman ◽  
Ali Hilal-Alnaqbi ◽  
Basim I. Abu-Jdayil

This work is concerned with the synthesis and characterization of Multi-Walled Carbon Nanotube (MWCNT) reinforced Kevlar KM2Plus composites with various MWCNT contents (0.2, 0.3, 0.4, 0.5, 0.6, and 0.8 wt. %), by the wet lay-up technique. These samples were experimentally investigated for their thermo-mechanical properties using Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), tensile testing and three-point bending techniques. The mechanical properties showed remarkable improvement with increasing MWCNT wt.% up to certain content. The results revealed that the addition of MWCNT fillers has no significant effect on the thermal stability of the composites.


2015 ◽  
Vol 17 (3) ◽  
pp. 78-83 ◽  
Author(s):  
Wojciech Ignaczak ◽  
Kinga Wiśniewska ◽  
Jolanta Janik ◽  
Mirosława El Fray

Abstract A linear triblock copolymer, poly(styrene-b-etylene/butylene-b-styrene)(SEBS) thermoplastic elastomer (TPE) grafted with maleic anhydride was used for compatibilization of PP/PBT blends. PP/PBT blends of different mass ratios 60/40, 50/50, 40/60 were mixed with 2.5, 5.0 and 7.5 wt.% of SEBS copolymer in a twin screw extruder. Differential scanning calorimetry and dynamic mechanical analysis were performed to define the phase structure of PP/PBT blends. TPE with a rubbery mid-block shifted the glass transition of PP/PBT blend towards lower temperatures, and significant decrease the crystallization temperature of a crystalline phase of PP component was observed. The influence of the amount of compatibilizer and the blend composition on the mechanical properties (tensile and flexural strengths, toughness and moduli) was determined. Addition of 5 wt.% of a triblock TPE led to a three-fold increase of PP/PBT toughness. A significant increase of impact properties was observed for all materials compatibilized with the highest amount of SEBS copolymer.


2011 ◽  
Vol 366 ◽  
pp. 314-317
Author(s):  
Ming Tao Run ◽  
Wen Zhou ◽  
Bing Tao Xing ◽  
Meng Yao

The crystal morphology and thermal properties of the PA6/PP-g-MAH/POE blends prepared by twin-screw extruder were studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) respectively. The results suggest that the crystal morphology of PA6 is acicular crystal while PP-g-MAH is micro-spherulites; The acicular crystals form across POE phase to PA6 phase, and the acicular crystals of PA6 in the POE phase have better regularity in dimension than those in amorphous PA6 phase. Acting as a compatibilizer, PP-g-MAH improves the miscibility of PA6 and POE, leading to the glass transition temperature of the blends decreases gradually with increasing POE contents. PA6 and PP-g-MAH can crystallize individually, and the formed PA6 crystals induced the crystallization of PP-g-MAH at higher temperature; furthermore, PP-g-MAH and POE components can increase the crystallization rate of PA6.


Sign in / Sign up

Export Citation Format

Share Document