Flexural and impact properties of flax fibre reinforced epoxy composite with nano TiO2 addition

2018 ◽  
Vol 5 (11) ◽  
pp. 24862-24870 ◽  
Author(s):  
Vishnu Prasad ◽  
M.A. Joseph ◽  
K. Sekar ◽  
Mubarak Ali
2018 ◽  
Vol 5 (5) ◽  
pp. 11569-11575 ◽  
Author(s):  
Vishnu Prasad ◽  
Deepak suresh ◽  
M.A. Joseph ◽  
K. Sekar ◽  
Mubarak Ali

2021 ◽  
Vol 258 ◽  
pp. 113378
Author(s):  
Kundan K. Verma ◽  
C.H. Viswarupachari ◽  
Kotresh M. Gaddikeri ◽  
S. Ramesh ◽  
S. Kumar ◽  
...  

2021 ◽  
pp. 1-21
Author(s):  
Partha Haldar ◽  
Tapas Kumar Bhattacharya ◽  
Nipu Modak

Abstract The study emphasized the sintering behaviour and tribo-mechanical properties of alumina ceramics by nano TiO2 addition as a sintering aid. With increase in sintering temperature, the bulk density of alumina has increased gradually and optimized at 1600°C. The optimizing effect of densification at 1600°C is 98.25% by the addition of 1 wt.% nano TiO2. The maximum solid solubility of titania in alumina grains was at 1600°C, causes optimisation of densification by 1 wt. % addition. The excess addition of TiO2 formed low dense Al2TiO5, appear as a secondary phase at grain boundaries and does not significantly improved densification. Fracture toughness increases and coefficient of friction decreases with the addition of nano TiO2 in alumina matrix. The 1wt.% nano TiO2 addition improved hardness to 8.82% and reduces specific wear rate to 45.56%. The 1wt.% nano TiO2 addition greatly influenced the microstructure of sintered Al2O3. The morphology was sharply changed from hexagonal columnar shape to order sub round orientation which also directly impact the tribo-mechanical properties of sintered alumina. The 1wt.% addition substantially decreases wear track depth as observed by 3D surface profilometer. Microscopic observation of the worn-out surface showed that wearing is majorly caused by plastic deformation and abrasion.


2013 ◽  
Vol 48 ◽  
pp. 51-58 ◽  
Author(s):  
Daniel Scida ◽  
Mustapha Assarar ◽  
Christophe Poilâne ◽  
Rezak Ayad

2018 ◽  
Vol 5 (9) ◽  
pp. 19997-20001 ◽  
Author(s):  
Abinash Panigrahi ◽  
Hemalata Jena ◽  
B. Surekha

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 109 ◽  
Author(s):  
Hom Nath Dhakal ◽  
Mohini Sain

The effect of unidirectional (UD) carbon fibre hybridisation on the tensile properties of flax fibre epoxy composite was investigated. Composites containing different fibre ply orientations were fabricated using vacuum infusion with a symmetrical ply structure of 0/+45/−45/90/90/−45/+45/0. Tensile tests were performed to characterise the tensile performance of plain flax/epoxy, carbon/flax/epoxy, and plain carbon/epoxy composite laminates. The experimental results showed that the carbon/flax fibre hybrid system exhibited significantly improved tensile properties over plain flax fibre composites, increasing the tensile strength from 68.12 MPa for plain flax/epoxy composite to 517.66 MPa (670% increase) and tensile modulus from 4.67 GPa for flax/epoxy to 18.91 GPa (305% increase) for carbon/flax hybrid composite. The failure mechanism was characterised by examining the fractured surfaces of tensile tested specimens using environmental scanning electron microscopy (E-SEM). It was evidenced that interactions between hybrid ply interfaces and strain to failure of the reinforcing fibres were the critical factors for governing tensile properties and failure modes of hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document