Investigation of mechanical, thermal and water absorption properties of flax fibre reinforced epoxy composite with nano TiO2 addition

Author(s):  
Vishnu Prasad ◽  
M.A. Joseph ◽  
K. Sekar
2018 ◽  
Vol 5 (11) ◽  
pp. 24862-24870 ◽  
Author(s):  
Vishnu Prasad ◽  
M.A. Joseph ◽  
K. Sekar ◽  
Mubarak Ali

2018 ◽  
Vol 5 (5) ◽  
pp. 11569-11575 ◽  
Author(s):  
Vishnu Prasad ◽  
Deepak suresh ◽  
M.A. Joseph ◽  
K. Sekar ◽  
Mubarak Ali

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shailendra Singh Chauhan ◽  
Vaibhav Singh ◽  
Gauranshu Saini ◽  
Nitin Kaushik ◽  
Vishal Pandey ◽  
...  

Purpose The growing environmental awareness all through the world has motivated a standard change toward planning and designing better materials having good performance, which are very much suited to the environmental factors. The purpose of this study is to investigate the impact on mechanical, thermal and water absorption properties of sawdust-based composites reinforced by epoxy, and the amount of sawdust in each form. Design/methodology/approach Manufacturing of the sawdust reinforced epoxy composites is the main area of the research for promoting the green composite by having good mechanical properties, biodegradability or many applications. Throughout this research work, the authors emphasize the importance of explaining the methodology for the evaluation of the mechanical and water absorption properties of the sawdust reinforced epoxy composites used by researchers. Findings In this paper, a comprehensive review of the mechanical properties of sawdust reinforced epoxy composite is presented. This study is reported about the use of different Wt.% of sawdust composites prepared by different processes and their mechanical, thermal and water absorption properties. It is studied that after optimum filler percentage, mechanical, thermal properties gradually decrease, but water absorption property increases with Wt.% of sawdust. The changes in the microstructure are studied by using scanning electron microscopy. Originality/value The novelty of this study lies in its use of a systematic approach that offers a perspective on choosing suitable processing parameters for the fabrication of composite materials for persons from both industry and academia. A study of sawdust reinforced epoxy composites guides new researchers in the fabrication and characterization of the materials.


Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Samuel Mandin ◽  
Samuel Moreau ◽  
Malika Talantikite ◽  
Bruno Novalès ◽  
Jean-Eudes Maigret ◽  
...  

Bio-based aerogels containing cellulose nanofibrils (CNFs) are promising materials due to the inherent physical properties of CNF. The high affinity of cellulose to plant hemicelluloses (xyloglucan, xylan, pectin) is also an opportunity to develop biomaterials with new properties. Here, we prepared aerogels from gelled dispersions of CNFs and xyloglucan (XG) at different ratios by using a freeze-casting procedure in unidirectional (UD) and non-directional (ND) manners. As showed by rheology analysis, CNF and CNF/XG dispersions behave as true gels. We investigated the impact of the freezing procedure and the gel’s composition on the microstructure and the water absorption properties. The introduction of XG greatly affects the microstructure of the aerogel from lamellar to cellular morphology. Bio-based aerogels showed high water absorption capacity with shape recovery after compression. The relation between morphology and aerogel compositions is discussed.


2012 ◽  
Vol 127 (2) ◽  
pp. 1295-1300 ◽  
Author(s):  
Catherine Esnaashari ◽  
Saied Nouri Khorasani ◽  
Mehdi Entezam ◽  
Shahla Khalili

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hemalata Jena ◽  
Abinash Panigrahi

Purpose Here, attempts have been made to explore the possible use of Marine waste as filler materials into the bio-fibre composites. Clam shell is a type of marine waste which belongs to the class of Bivalvia. It is mainly made of aragonite crystalline polymorphs. This paper aims to develop a new class of natural fibre composite in which jute fibre as reinforcement, epoxy as matrix and clam shell, as particulate microsphere filler. The study investigates the effects of different amounts of clam shell powder on the kinetics of water absorption of jute fibre-reinforced epoxy composite. Two different environmental conditions at room temperature, i.e. distilled water and seawater, are collected for this purpose. Moisture absorption reduces when clam shell is added to the jute-epoxy composite. The curve of water absorption of jute-epoxy composites with filler loading at both environmental conditions follows as Fickian behaviour. Design/methodology/approach Hand lay-up technique to fabricate the composite – Experimental observation Findings The incorporation of Clam shell filler in jute epoxy composite modified the water absorption property of the composite. Hence the present marine waste is an potential filler in jute fibre reinforced polymer composite. Originality/value The paper demonstrates a new class hybrid composite material which uses a marine waste as important phase in the bio-fibre-reinforced composite. It is a new work submitted for original research paper.


Sign in / Sign up

Export Citation Format

Share Document