Experimental study and ignition fire risk mapping on friction stir welding parameters of dissimilar alloys for the benefits of environment

2020 ◽  
Vol 22 ◽  
pp. 342-346 ◽  
Author(s):  
S.P. Sundar Singh Sivam ◽  
Ganesh Babu Loganathan ◽  
K. Saravanan ◽  
V.G. Umasekar
2016 ◽  
Vol 15 (4) ◽  
pp. 99-107 ◽  
Author(s):  
M. T.S.M. Sai ◽  
D. A. Hamid ◽  
A. Ismail ◽  
S. N.N. Zaina ◽  
M. Awang ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 214 ◽  
Author(s):  
Velaphi Msomi ◽  
Nontle Mbana

Welding of dissimilar aluminium alloys has been a challenge for a long period until the discovery of the solid-state welding technique called friction stir welding (FSW). The discovery of this technique encouraged different research interests revolving around the optimization of this technique. This involves the welding parameters optimization and this optimization is categorized into two classes, i.e., similar alloys and dissimilar alloys. This paper reports about the mechanical properties of the friction stir welded dissimilar AA1050-H14 and AA5083-H111 joint. The main focus is to compare the mechanical properties of specimens extracted from different locations of the welds, i.e., the beginning, middle, and the end of the weld. The specimen extracted at the beginning of the weld showed low tensile properties compared to specimens extracted from different locations of the weld. There was no certain trend noted through the bending results. All three specimens showed dimpled fracture, which is the characterization of the ductile fracture.


Author(s):  
Velaphi Msomi ◽  
Nontle Mbana

Welding of dissimilar aluminium alloys has been a challenge for a long period until the discovery of the solid state welding technique called friction stir welding (FSW). The discovery of this technique encouraged different research interests revolving around the optimization of this technique. This involves the welding parameters optimization and this optimization is categorized into two classes i.e. similar alloys and dissimilar alloys. This paper reports about the mechanical properties of the friction stir welded dissimilar AA1050-H14 and AA5083-H111 joint. The main focus is to compare the mechanical properties of specimens extracted from different locations of the welds i.e. the beginning, middle and the end of the weld. The specimen extracted at the beginning of the weld showed low tensile properties compared to specimens extracted from different locations of the weld. There was no certain trend noted through the bending results. All three specimens showed dimpled fracture which is the characterization of the ductile fracture.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


Sign in / Sign up

Export Citation Format

Share Document