Influences of ultrasonic on friction stir welding of Al/Ti dissimilar alloys under different welding conditions

Author(s):  
Zhongwei Ma ◽  
Xiao Sun ◽  
Shude Ji ◽  
Yue Wang ◽  
Yumei Yue
2011 ◽  
Vol 189-193 ◽  
pp. 3266-3269 ◽  
Author(s):  
Yu Hua Chen ◽  
Peng Wei ◽  
Quan Ni ◽  
Li Ming Ke

Titanium alloy TC1 and Aluminum alloy LF6 were jointed by friction stir welding (FSW), and the influence of process parameters on formation of weld surface, cross-section morphology and tensile strength were studied. The results show that, Titanium and Aluminum dissimilar alloy is difficult to be joined by FSW, and some defects such as cracks and grooves are easy to occur. When the rotational speed of stir head(n) is 750r/min and 950r/min, the welding speed(v) is 118mm/min or 150mm/min, a good formation of weld surface can be obtained, but the bonding of titanium/aluminum interface in the cross-section of weld joint is bad when n is 750r/min which results in a low strength joint. When n is 950r/min and v is 118mm/min,the strength of the FSW joint of Titanium/Aluminum dissimilar materials is 131MPa which is the highest.


Author(s):  
Sipokazi Mabuwa ◽  
Velaphi Msomi

The use of aluminium alloys continues to grow in many applications to mention a few aerospace, automotive, electronics, electricity, construction and food packaging. With so much demand there is a new interest in welding of dissimilar aluminium alloys. Some of the welding techniques used to join dissimilar aluminium alloys include friction stir welding and TIG welding. The welding of dissimilar alloys affects the mechanical properties negatively due to porosity and cracking during the welding. This then suggests that there should be a process which can be used to improve the dissimilar alloys mechanical properties post its production. Friction stir processing was found to be one of the mechanical techniques that could be used to improve the mechanical properties of the material. This paper reports on the literature on the friction stir welding, TIG welding and friction stir processing techniques published so far, with the aim to identify the gap in the use of friction stir process as a post processing technique of the weld joints.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 142 ◽  
Author(s):  
Sipokazi Mabuwa ◽  
Velaphi Msomi

There is an increase in reducing the weight of structures through the use of aluminium alloys in different industries like aerospace, automotive, etc. This growing interest will lead towards using dissimilar aluminium alloys which will require welding. Currently, tungsten inert gas welding and friction stir welding are the well-known techniques suitable for joining dissimilar aluminium alloys. The welding of dissimilar alloys has its own dynamics which impact on the quality of the weld. This then suggests that there should be a process which can be used to improve the welds of dissimilar alloys post their production. Friction stir processing is viewed as one of the techniques that could be used to improve the mechanical properties of a material. This paper reports on the status and the advancement of friction stir welding, tungsten inert gas welding and the friction stir processing technique. It further looks at the variation use of friction stir processing on tungsten inert gas and friction stir welded joints with the purpose of identifying the knowledge gap.


2010 ◽  
Vol 15 (8) ◽  
pp. 699-705 ◽  
Author(s):  
I. Eberl ◽  
C. Hantrais ◽  
J.-C. Ehrtsrom ◽  
C. Nardin

Sign in / Sign up

Export Citation Format

Share Document