A brief review on the mechanical properties of Carbon nanotube reinforced polymer composites

2020 ◽  
Vol 22 ◽  
pp. 2109-2117
Author(s):  
Rohit Pratyush Behera ◽  
Prashant Rawat ◽  
Santosh Kumar Tiwari ◽  
Kalyan Kumar Singh
Author(s):  
Johnson Samuel ◽  
Ashutosh Dikshit ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor ◽  
K. Jimmy Hsia

The machinability of carbon nanotube (CNT)-reinforced polymer composites is studied as a function of CNT loading, in light of the trends seen in their material properties. To this end, the thermo-mechanical properties of CNT composites with different loadings of CNTs are characterized. Micro endmilling experiments are also conducted on all the materials under investigation. Chip morphology, burr width, surface roughness and cutting forces are used as the machinability measures to compare the composites. For composites with lower loadings of CNTs (1.75% by weight), the visco-elastic/plastic deformation of the polymer phase plays a significant role during machining, whereas, at loadings ≥ 5% by weight, the CNT distribution and interface effects dictate the machining response of the composite. The ductile-to-brittle transition and reduction in fracture strength that occurs with an increase in CNT loading, results in reduced minimum chip thickness values, burr dimensions and cutting forces in the CNT composite. The increase in thermal conductivity with the increase in CNT loading, results in reduced number of adiabatic shear bands being observed on the chips and reduced thermal softening effects at high cutting velocities. Thus, overall the increase in CNT loading improves the machinability of the composite.


2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


Sign in / Sign up

Export Citation Format

Share Document