Improved Cuprous Iodide and Tin Halide based Perovskite solar cell design for better Fill Factor and power conversion efficiency

2020 ◽  
Vol 28 ◽  
pp. 1955-1961
Author(s):  
Shiva Sharma ◽  
Anil Kumar Sharma
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Syed Sajjad Hussain ◽  
Saira Riaz ◽  
Ghazi Aman Nowsherwan ◽  
Khizer Jahangir ◽  
Akram Raza ◽  
...  

The highest power conversion efficiency (PCE) for organic-inorganic perovskite solar cells based on lead is reported as 25.2% in 2019. Lead-based hybrid perovskite materials are used in several photovoltaics applications, but these are not highly favored due to the toxicity of lead and volatility of organic cations. On the other hand, hybrid lead-free double perovskite has no such harm. In this research study, SCAPS numerical simulation is utilized to evaluate and compare the results of perovskite solar cell based on double perovskite FA 2 BiCuI 6 and standard perovskite CH 3 NH 3 PbI 3 as an active layer. The results show that the power conversion efficiency obtained in the case of FA 2 BiCuI 6 is 24.98%, while in the case of CH 3 NH 3 PbI 3 , it is reported as 26.42%. This indicates that the hybrid organic-inorganic double perovskite FA 2 BiCuI 6 has the ability to replace hybrid organic-inorganic perovskite CH 3 NH 3 PbI 3 to expand next-generation lead-free harmless materials for solar cell applications.


2020 ◽  
Vol 07 (02) ◽  
pp. 109-115
Author(s):  
Muhammad Aitezaz Hussain ◽  
◽  
Sobab Khan ◽  
Ahtasham Rahim ◽  
Azam Jan ◽  
...  

2019 ◽  
Vol 7 (8) ◽  
pp. 3570-3576 ◽  
Author(s):  
Zhong Zheng ◽  
Shaoqing Zhang ◽  
Jianqiu Wang ◽  
Jianqi Zhang ◽  
Dongyang Zhang ◽  
...  

An inverted organic solar cell with finely tuned ZnO : PFN-Br electron transporting layer shows 13.8% power conversion efficiency and 78.8% fill factor.


2020 ◽  
Vol 8 (23) ◽  
pp. 7786-7792 ◽  
Author(s):  
Qingxia Fu ◽  
Xianglan Tang ◽  
Dengxue Li ◽  
Lu Huang ◽  
Shuqin Xiao ◽  
...  

Aminoguanidine hydrochloride passivated Sn-perovskite with a power conversion efficiency of 7.3%.


2017 ◽  
Vol 5 (47) ◽  
pp. 24790-24803 ◽  
Author(s):  
Kwang-Ho Jung ◽  
Ja-Young Seo ◽  
Seonhee Lee ◽  
Hyunjung Shin ◽  
Nam-Gyu Park

A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO2electron-transporting layer (ETL).


2013 ◽  
Vol 378 ◽  
pp. 125-130
Author(s):  
Murtaza Imran

In contrast to the solar cells based on inorganic semiconductors, organic solar cells degrade during illumination. Therefore, the influence of the illumination time on the efficiencies of an organic solar cell is investigated which reveals that under steady-state illumination at 1 sun (100 mW/cm2) the efficiency of the solar cell with the structure of ITO/CuPc/C60/BCP/Ag degrade significantly over few hours. There are three efficiencies that are of interest; Fill Factor (FF), Power Conversion Efficiency (PCE), and Quantum Yield (QY). Fill factor decreased less than power conversion efficiency and quantum yield, indicating that the degradation in those efficiencies is caused by photon-induced damage to the molecules that did not lead to an increase in internal resistance.


Sign in / Sign up

Export Citation Format

Share Document