Illumination Time Dependent Degradation of C60 Solar Cell Efficiencies

2013 ◽  
Vol 378 ◽  
pp. 125-130
Author(s):  
Murtaza Imran

In contrast to the solar cells based on inorganic semiconductors, organic solar cells degrade during illumination. Therefore, the influence of the illumination time on the efficiencies of an organic solar cell is investigated which reveals that under steady-state illumination at 1 sun (100 mW/cm2) the efficiency of the solar cell with the structure of ITO/CuPc/C60/BCP/Ag degrade significantly over few hours. There are three efficiencies that are of interest; Fill Factor (FF), Power Conversion Efficiency (PCE), and Quantum Yield (QY). Fill factor decreased less than power conversion efficiency and quantum yield, indicating that the degradation in those efficiencies is caused by photon-induced damage to the molecules that did not lead to an increase in internal resistance.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Ali Haghighat Bayan ◽  
Faramarz Afshar Taromi ◽  
Massimiliano Lanzi ◽  
Filippo Pierini

AbstractOver the last decade, nanotechnology and nanomaterials have attracted enormous interest due to the rising number of their applications in solar cells. A fascinating strategy to increase the efficiency of organic solar cells is the use of tailor-designed buffer layers to improve the charge transport process. High-efficiency bulk heterojunction (BHJ) solar cells have been obtained by introducing hollow core polyaniline (PANI) nanofibers as a buffer layer. An improved power conversion efficiency in polymer solar cells (PSCs) was demonstrated through the incorporation of electrospun hollow core PANI nanofibers positioned between the active layer and the electrode. PANI hollow nanofibers improved buffer layer structural properties, enhanced optical absorption, and induced a more balanced charge transfer process. Solar cell photovoltaic parameters also showed higher open-circuit voltage (+ 40.3%) and higher power conversion efficiency (+ 48.5%) than conventional architecture BHJ solar cells. Furthermore, the photovoltaic cell developed achieved the highest reported efficiency value ever reached for an electrospun fiber-based solar cell (PCE = 6.85%). Our results indicated that PANI hollow core nanostructures may be considered an effective material for high-performance PSCs and potentially applicable to other fields, such as fuel cells and sensors.


Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16305-16312 ◽  
Author(s):  
Seokhyun Yoon ◽  
Si Joon Kim ◽  
Harrison S. Kim ◽  
Joon-Suh Park ◽  
Il Ki Han ◽  
...  

Pin-hole free and conductive In2O3 electron transporting layers lead to a power conversion efficiency of 14.63% in a perovskite solar cell and 3.03% in an organic solar cell.


2021 ◽  
Vol 1039 ◽  
pp. 373-381
Author(s):  
Taif Saad Al Maadhde ◽  
Mohammad Hafizuddin Jumali ◽  
Hadi J.M. Al-Agealy ◽  
Fatimah Binti Abdul Razak ◽  
Chi Chin Yap

This study investigated and calculated the fill factor and efficiency of N719 and D149 organic dyes in titanium dioxide (TiO2) solar cell systems using a current equation that we derived using a quantum transition-state theory (TST). The theory of charge transfer reactions was used to investigate the electronic current to enhance both the fill factor and efficiency of both N719/ and D149/TiO2 solar cell systems. The current calculated for Di-terabtylammoniumcis-bis (isthiocyanato) bis (2,2-bipyridyl-4,4dicarboxylato) ruthenicyanatoum (II)(N719) and 5-[[4-[4-(2,2-Diphenylethenyl) phenyl]-1,2,3-3a,4,8b-hexahydrocyclopent [b] indol-7-yl] methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid indicated that the molecules of D149, an indoline-based dye, have to be in contact with the semiconductor due to the quantum donor-acceptor scenario model. The efficiency of N719/and D149/TiO2 solar cells were significantly affected due to transition energy, which is caused by the mechanisms of the charge transfer process. Solvents; such as trifluoroethanol (C2H3F3O), propanol (C3H8O), ethanol (C2H5OH), and acetonitrile (C2H3N); were used to determine the current, fill factor, and efficiency. Coefficients of charge transfer; such as transition energy, barrier, driving force energy, current, power-conversion efficiency, fill factor (FF), and efficiency; were evaluated theoretically. The current of the N719/ system with acetonitrile and ethanol solvents was higher than current of the N719/ system with trifluoroethanol and propanol solvents. While the current of the D149/ system with trifluoroethanol and propanol solvents was higher than current of the D149/ system with acetonitrile and ethanol solvents. The current and transition energy efficiencies of both systems varied. devices were found to have the best power conversion efficiency and low transition energies while the power conversion efficiency was large for devices with sizeable current density and activity with lower transition energies. Keywords: Fill Factor, Efficiency, Molecule/Semiconductor, Solar Cells.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18816-18823
Author(s):  
Anass El Karkri ◽  
Zakaria El Malki ◽  
Mohammed Bouachrine ◽  
Françoise Serein-Spirau ◽  
Jean-Marc Sotiropoulos

The solar cell ITO/PEDOT/[(Cbz-Mth)-B-DT]2-A:PCBM/Al under study and the results obtained, including a power conversion efficiency of 11%. The impact of several parameters on the performance has been studied to obtain the optimal device architecture.


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


Author(s):  
Minkyu Kyeong ◽  
Jinho Lee ◽  
Matyas Daboczi ◽  
Katherine Stewart ◽  
Huifeng Yao ◽  
...  

Functionalized polyethyleneimines that are compatible with non-fullerene acceptors have been developed by protecting the reactive amine groups, leading to non-fullerene solar cells with high power conversion efficiency and enhanced thermal stability.


Sign in / Sign up

Export Citation Format

Share Document