Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure

2019 ◽  
Vol 7 (8) ◽  
pp. 3570-3576 ◽  
Author(s):  
Zhong Zheng ◽  
Shaoqing Zhang ◽  
Jianqiu Wang ◽  
Jianqi Zhang ◽  
Dongyang Zhang ◽  
...  

An inverted organic solar cell with finely tuned ZnO : PFN-Br electron transporting layer shows 13.8% power conversion efficiency and 78.8% fill factor.

Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16305-16312 ◽  
Author(s):  
Seokhyun Yoon ◽  
Si Joon Kim ◽  
Harrison S. Kim ◽  
Joon-Suh Park ◽  
Il Ki Han ◽  
...  

Pin-hole free and conductive In2O3 electron transporting layers lead to a power conversion efficiency of 14.63% in a perovskite solar cell and 3.03% in an organic solar cell.


2014 ◽  
Vol 2 (25) ◽  
pp. 4937-4946 ◽  
Author(s):  
Yu Jin Kim ◽  
Jang Yeol Baek ◽  
Jong-jin Ha ◽  
Dae Sung Chung ◽  
Soon-Ki Kwon ◽  
...  

A novel small molecule with alkylselenophene-substituted benzodithiophene unit,BDTSe-TTPD, showed strong light absorption, low HOMO level and photovoltaic characteristics with power conversion efficiency as high as 4.37%.


2017 ◽  
Vol 5 (47) ◽  
pp. 24790-24803 ◽  
Author(s):  
Kwang-Ho Jung ◽  
Ja-Young Seo ◽  
Seonhee Lee ◽  
Hyunjung Shin ◽  
Nam-Gyu Park

A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO2electron-transporting layer (ETL).


2000 ◽  
Vol 61 (4) ◽  
pp. 403-416 ◽  
Author(s):  
Kohshin Takahashi ◽  
Noriko Kuraya ◽  
Takahiro Yamaguchi ◽  
Teruhisa Komura ◽  
Kazuhiko Murata

2013 ◽  
Vol 378 ◽  
pp. 125-130
Author(s):  
Murtaza Imran

In contrast to the solar cells based on inorganic semiconductors, organic solar cells degrade during illumination. Therefore, the influence of the illumination time on the efficiencies of an organic solar cell is investigated which reveals that under steady-state illumination at 1 sun (100 mW/cm2) the efficiency of the solar cell with the structure of ITO/CuPc/C60/BCP/Ag degrade significantly over few hours. There are three efficiencies that are of interest; Fill Factor (FF), Power Conversion Efficiency (PCE), and Quantum Yield (QY). Fill factor decreased less than power conversion efficiency and quantum yield, indicating that the degradation in those efficiencies is caused by photon-induced damage to the molecules that did not lead to an increase in internal resistance.


2020 ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

Abstract All-inorganic CsPbI3 perovskite quantum dots (QDs) have received intense research interest for photovoltaic applications because of the recently demonstrated higher power conversion efficiency compared to solar cells using other QD materials. These QD devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. In this work, through developing a hybrid interfacial architecture consisting of CsPbI3 QD/PCBM heterojunctions, we report the formation of an energy cascade for efficient charge transfer at both QD heterointerfaces and QD/electron transport layer interfaces. The champion CsPbI3 QD solar cell has a best power conversion efficiency of 15.1%, which is among the highest report to date. Building on this strategy, we demonstrate the very first perovskite QD flexible solar cell with a record efficiency of 12.3%. A detailed morphological characterization reveals that the perovskite QD film can better retain structure integrity than perovskite bulk thin-film under external mechanical stress. This work is the first to demonstrate higher mechanical endurance of QD film compared to bulk thin-film, and highlights the importance of further research on high‐performance and flexible optoelectronic devices using solution-processed QDs.


2018 ◽  
Vol 8 (31) ◽  
pp. 1800529 ◽  
Author(s):  
Shangshang Chen ◽  
Huatong Yao ◽  
Bo Hu ◽  
Guangye Zhang ◽  
Lingeswaran Arunagiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document