Microstructural and microhardness study on fabrication of Al 5059/SiC composite component via a novel route of friction stir additive manufacturing

Author(s):  
Manu Srivastava ◽  
Sandeep Rathee
Author(s):  
Thomas Robinson ◽  
Malcolm Williams ◽  
Harish Rao ◽  
Ryan P. Kinser ◽  
Paul Allison ◽  
...  

Abstract In recent years, additive manufacturing (AM) has gained prominence in rapid prototyping and production of structural components with complex geometries. Magnesium alloys, whose strength-to-weight ratio is superior compared to steel and aluminum alloys, have shown potential in lightweighting applications. However, commercial beam-based AM technologies have limited success with magnesium alloys due to vaporization and hot cracking. Therefore, as an alternative approach, we propose the use of a near net-shape solid-state additive manufacturing process, Additive Friction Stir Deposition (AFSD), to fabricate magnesium alloys in bulk. In this study, a parametric investigation was performed to quantify the effect of process parameters on AFSD build quality including volumetric defects and surface quality in magnesium alloy AZ31B. In order to understand the effect of the AFSD process on structural integrity in the magnesium alloy AZ31B, in-depth microstructure and mechanical property characterization was conducted on a bulk AFSD build fabricated with a set of acceptable process parameters. Results of the microstructure analysis of the as-deposited AFSD build revealed bulk microstructure similar to wrought magnesium alloy AZ31 plate. Additionally, similar hardness measurements were found in AFSD build compared to control wrought specimens. While tensile test results of the as-deposited AFSD build exhibited a 20 percent drop in yield strength, nearly identical ultimate strength was observed compared to the wrought control. The experimental results of this study illustrate the potential of using the AFSD process to additively manufacture Mg alloys for load bearing structural components with achieving wrought-like microstructure and mechanical properties.


2019 ◽  
Vol 9 (17) ◽  
pp. 3486 ◽  
Author(s):  
R. Joey Griffiths ◽  
Dylan T. Petersen ◽  
David Garcia ◽  
Hang Z. Yu

The repair of high strength, high performance 7075 aluminum alloy is essential for a broad range of aerospace and defense applications. However, it is challenging to implement it using traditional fusion welding-based approaches, owing to hot cracking and void formation during solidification. Here, the use of an emerging solid-state additive manufacturing technology, additive friction stir deposition, is explored for the repair of volume damages such as through -holes and grooves in 7075 aluminum alloy. Three repair experiments have been conducted: double through-hole filling, single through-hole filling, and long, wide-groove filling. In all experiments, additive friction stir deposition proves to be effective at filling the entire volume. Additionally, sufficient mixing between the deposited material and the side wall of the feature is always observed in the upper portions of the repair. Poor mixing and inadequate repair quality have been observed in deeper portions of the filling in some scenarios. Based on these observations, the advantages and disadvantages of using additive friction stir deposition for repairing volume damages are discussed. High quality and highly flexible repairs are expected with systematic optimization work on process control and repair strategy development in the future.


2018 ◽  
Vol 153 ◽  
pp. 122-130 ◽  
Author(s):  
Hang Z. Yu ◽  
Mackenzie E. Jones ◽  
George W. Brady ◽  
R. Joey Griffiths ◽  
David Garcia ◽  
...  

Author(s):  
Fadi Al-Badour ◽  
Ibrahim H. Zainelabdeen ◽  
Rami K. Suleiman ◽  
Akeem Adesina

Abstract A hybrid additive manufacturing (AM) and friction stir processing (FSP) was used to heal a crack in 6 mm thick Al 6061-T6 aluminum alloy. AL-6061 is usually used in H2 high-pressure vessel fabrication as well as aerospace applications. In this work, Al-Si powder was utilized to fill the crack, then FSP was applied to consolidate and stir the powder with the base metal to fill and close the crack zone. Effect of FSP parameters including welding speed and tool rotation speed on the quality of repair was studied. Various mechanical tests, as well as characterization techniques such as hardness test, optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), were employed to study the newly developed hybrid process on the quality of the repair. The investigation revealed that low rotational speed of 800 rpm results in minimum variation in microhardness. Moreover, the impact of welding speed on microhardness is smaller as compared to rotational speed.


Sign in / Sign up

Export Citation Format

Share Document