Tri-Ethanolamine-Ethoxylate assisted hydrothermal synthesis of nanostructured MnCo2O4 with superior electrochemical performance for high energy density supercapacitor application

Author(s):  
Santosh J. Uke ◽  
Gajanan N. Chaudhari ◽  
Yogesh Kumar ◽  
Satish P. Mardikar
Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2019 ◽  
Vol 6 (3) ◽  
pp. 659-670 ◽  
Author(s):  
Zhiqin Sun ◽  
Xue Yang ◽  
Huiming Lin ◽  
Feng Zhang ◽  
Qian Wang ◽  
...  

FeS2, prepared using a rapid microwave assisted method, exhibits excellent electrochemical performance for supercapacitor and OER applications.


RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40291-40299
Author(s):  
Wan Aida Hazwani Wan Azizan ◽  
Muhd Firdaus Kasim ◽  
Kelimah Elong ◽  
Roshidah Rusdi ◽  
Rizuan Mohd Rosnan ◽  
...  

Al substitute into Ni site increase Li–O and reduce M–O atomic distance lead to excellent cycleability with high energy density.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1467
Author(s):  
Xuanni Lin ◽  
Zhuoyi Yang ◽  
Anru Guo ◽  
Dong Liu

High energy density batteries with high performance are significantly important for intelligent electrical vehicular systems. Iron sulfurs are recognized as one of the most promising anodes for high energy density lithium-ion batteries because of their high theoretical specific capacity and relatively stable electrochemical performance. However, their large-scale commercialized application for lithium-ion batteries are plagued by high-cost and complicated preparation methods. Here, we report a simple and cost-effective method for the scalable synthesis of nanoconfined FeS in porous carbon (defined as FeS@C) as anodes by direct pyrolysis of an iron(III) p-toluenesulfonate precursor. The carbon architecture embedded with FeS nanoparticles provides a rapid electron transport property, and its hierarchical porous structure effectively enhances the ion transport rate, thereby leading to a good electrochemical performance. The resultant FeS@C anodes exhibit high reversible capacity and long cycle life up to 500 cycles at high current density. This work provides a simple strategy for the mass production of FeS@C particles, which represents a critical step forward toward practical applications of iron sulfurs anodes.


MRS Advances ◽  
2017 ◽  
Vol 2 (7) ◽  
pp. 381-387 ◽  
Author(s):  
Mohanapriya. K ◽  
Neetu Jha

ABSTRACTA simple and scalable method is developed to prepare highly wrinkled graphene sheets – carbon nanospheres (WG-CN) composite for ultra high energy density supercapacitor application. Here, we introduce a novel simple paraffin wax candle flame technique for the simultaneous reduction of graphene oxide (GO) and deposition of carbon nanospheres on the graphene sheets. This is followed by introducing permanent wrinkles to the composite. The WG-CN composite exhibit the high specific capacitance values of 290 F g-1 and 253.7 F g-1 (138.5 F cm-3) for 6M KOH and EMIMBF4 ionic liquid electrolytes respectively. The ultra high energy density values of 108 Wh Kg-1 and 58.9 Wh L-1 has been obtained at the power density of 3955 W Kg-1 and 2157 W L-1 simultaneously. These attractive performances exhibited by the WG-CN composite supercapacitor electrode make them potential candidate for future energy storage devices. The key to success of this composite is the ability to make full utilization of the high intrinsic specific surface area of the nanocomposite.


Sign in / Sign up

Export Citation Format

Share Document