scholarly journals Facile Synthesis of FeS@C Particles Toward High-Performance Anodes for Lithium-Ion Batteries

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1467
Author(s):  
Xuanni Lin ◽  
Zhuoyi Yang ◽  
Anru Guo ◽  
Dong Liu

High energy density batteries with high performance are significantly important for intelligent electrical vehicular systems. Iron sulfurs are recognized as one of the most promising anodes for high energy density lithium-ion batteries because of their high theoretical specific capacity and relatively stable electrochemical performance. However, their large-scale commercialized application for lithium-ion batteries are plagued by high-cost and complicated preparation methods. Here, we report a simple and cost-effective method for the scalable synthesis of nanoconfined FeS in porous carbon (defined as FeS@C) as anodes by direct pyrolysis of an iron(III) p-toluenesulfonate precursor. The carbon architecture embedded with FeS nanoparticles provides a rapid electron transport property, and its hierarchical porous structure effectively enhances the ion transport rate, thereby leading to a good electrochemical performance. The resultant FeS@C anodes exhibit high reversible capacity and long cycle life up to 500 cycles at high current density. This work provides a simple strategy for the mass production of FeS@C particles, which represents a critical step forward toward practical applications of iron sulfurs anodes.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 334 ◽  
Author(s):  
Qiming Liu ◽  
Huali Zhu ◽  
Jun Liu ◽  
Xiongwei Liao ◽  
Zhuolin Tang ◽  
...  

Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 was successfully prepared by sol–gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g−1 at 0.05 C, and the discharge specific capacity was 138 mAh·g−1 at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.


2019 ◽  
Vol 7 (21) ◽  
pp. 13120-13129 ◽  
Author(s):  
Min Chen ◽  
Xiaojing Jin ◽  
Zhi Chen ◽  
Yaotang Zhong ◽  
Youhao Liao ◽  
...  

Cross-like hierarchical porous Li1.167Mn0.583Ni0.250O2 with (110)-oriented crystal planes (CHP-LMNO) is successfully developed by a morphology-conserved solid-state Li implantation method.


2021 ◽  
pp. 2150105
Author(s):  
NARUEPHON MAHAMAI ◽  
THANAPHAT AUTTHAWONG ◽  
AISHUI YU ◽  
THAPANEE SARAKONSRI

Lithium-ion batteries (LIBs) have become commercialized technologies for the modern and future world, but commercial batteries using graphite still have a low specific capacity and are concerned with safety issues. Silicon (Si) and antimony (Sb) nanocomposites have the tendency to be synthesized as high-energy-density anode materials which can be a solution for the above-mentioned problems. This work reported the synthesis methods and characterization of Sb and Si composited with nitrogen-doped graphene (SbSi/NrGO) by facile chemical method and thermal treatment. Si was obtained by magnesiothermic reduction of SiO2 derived from rice husk, waste from the agricultural process. To study the phases, particle distributions, and morphologies, all prepared composites were characterized. In this experiment, the phase compositions were confirmed as [Formula: see text]-Si, [Formula: see text]-Si, SiC, Sb, and shifted peaks of expanded C which were caused by NrGO synthesis. Interestingly, a good distribution of Si and Sb particles on the NrGO surface was obtained in 15Sb15Si/NrGO composition. It could be due to appropriate Sb and Si contents on the NrGO surface area in composite materials. Morphological identification of synthesized products represented the Sb and Si particles in nanoscale dispersed on thin wrinkled-paper NrGO. These results suggested that the synthesis method in this paper is appropriate to prepare SbSi/NrGO nanocomposites to be used as high-performance anode materials in high-performance LIBs for advanced applications.


Author(s):  
Ao Chen ◽  
Xun Guo ◽  
Shuo Yang ◽  
Guojin Liang ◽  
Qing Li ◽  
...  

Flexible lithium ion batteries (LIBs) with high energy density and stable electrochemical performance are regarded as the most promising power for supplying the wearable electronics. Simultaneously achieving small bending angle,...


2020 ◽  
Vol 4 (9) ◽  
pp. 4625-4636
Author(s):  
Orapim Namsar ◽  
Thanaphat Autthawong ◽  
Viratchara Laokawee ◽  
Ruttapol Boonprachai ◽  
Mitsutaka Haruta ◽  
...  

Novel anode materials for lithium-ion batteries, nanocomposites of Sn (or SnO2) and SiO2 with graphene-based sheets (GO, rGO and NrGO), were synthesized by a facile and low-cost technique. The capacity of all composites was relatively high as compared to traditional graphite.


2019 ◽  
Vol 7 (13) ◽  
pp. 7516-7525 ◽  
Author(s):  
Guodong Zou ◽  
Bingcheng Ge ◽  
Hao Zhang ◽  
Qingrui Zhang ◽  
Carlos Fernandez ◽  
...  

A new MXene/Na0.55Mn1.4Ti0.6O4hybrid with bifunctional properties is synthesized by a self-reduction method, providing a high energy density for symmetric LIBs.


RSC Advances ◽  
2015 ◽  
Vol 5 (116) ◽  
pp. 95488-95494 ◽  
Author(s):  
Haowen Meng ◽  
Hongyan Yang ◽  
Xiaohui Yu ◽  
Peng Dou ◽  
Daqian Ma ◽  
...  

Transition metals have attracted much attention due to their high energy density in lithium-ion batteries (LIBs).


Author(s):  
Li Yang ◽  
Wentao Deng ◽  
Wei Xu ◽  
Ye Tian ◽  
Anni Wang ◽  
...  

As a promising cathode material for high performance lithium ion batteries, olivine LiMnxFe1-xPO4 (LMFP) combines the high safety of LiFePO4 and the high energy density of LiMnPO4. However, there are...


2020 ◽  
Author(s):  
Yun Zhao ◽  
Yuqiong Kang ◽  
Changjian Deng ◽  
Xinyi Liu ◽  
Zheng Liang ◽  
...  

Abstract With the demand for higher energy density and smaller size lithium-ion batteries (LIBs), the development of high specific capacity active materials and the reduction of the usage of inactive materials are the main directions. Herein, a universal method is developed for binder-free electrodes for excellent stable LIBs by rolling the electrospun membrane directly onto the commercial current collector. The rolling process only makes the fiber web denser without changing the fiber structure, and the fiber web still maintains a porous structure. This strategy significantly improves the structural stability of the membrane compared to the direct carbonized electrospun membrane. Moreover, this method is suitable for a variety of polymerizable adhesive polymers, and each polymer can be composited with different polymers, inorganic salts, etc. The electrode prepared by this method can be stably cycled for more than 2000 cycles at a current density of 2500 mA g-1. This study provides a cost-effective and versatile strategy to design the LIB electrode with high energy density and stability for experimental research and practical application.


Sign in / Sign up

Export Citation Format

Share Document