Investigation of three-body abrasive wear characteristics of white ark shell powder

Author(s):  
Ujjwal Jajuha ◽  
Vishal Ahlawat
2022 ◽  
Vol 275 ◽  
pp. 125232
Author(s):  
Riki Hendra Purba ◽  
Kazumichi Shimizu ◽  
Kenta Kusumoto ◽  
Yila Gaqi ◽  
Takayuki Todaka

2011 ◽  
Vol 25 (31) ◽  
pp. 4257-4260
Author(s):  
YONG-SUK KIM ◽  
NARAE YOON ◽  
JONG CHUL KIM

Sliding wear and three-body abrasive wear characteristics of plain carbon steel (0.19C-0.72Mn) were compared to understand mechanisms of both wear in the steel. Microstructure of the steel was varied by heat treatments, and effects of microstructure as well as hardness on both wear were investigated. Dry sliding wear tests were carried out at room temperature using a pin-on-disk wear tester against AISI 52100 bearing steel. Three-body abrasive wear tests were performed using a ball-cratering abrasive wear tester employing angular SiC abrasives. The sliding wear proceeded with subsurface deformation and consequent fracture, while micro ploughing and cutting were major mechanisms of the abrasive wear. Hardness alone failed to characterize the sliding wear of the steel. Subsurface strain-hardening and uniform-deformation were principal controlling factors for the sliding wear, while hardness was the factor to control the abrasive wear of the steel under the given test condition.


1997 ◽  
Vol 63 (611) ◽  
pp. 2464-2469 ◽  
Author(s):  
Sadakazu TERAOKA ◽  
Ken-ichi ISHIKAWA ◽  
Tatsuo NAKAGAWA ◽  
Kentaro OHTA

Wear ◽  
2019 ◽  
Vol 426-427 ◽  
pp. 122-127
Author(s):  
Kenta Kusumoto ◽  
Kazumichi Shimizu ◽  
V.G. Efremenko ◽  
Hiroya Hara ◽  
Masato Shirai ◽  
...  

2019 ◽  
Vol 895 ◽  
pp. 45-51
Author(s):  
M.J. Raghu ◽  
Govardhan Goud

Natural fibers are widely used for reinforcement in polymer composite materials and proved to be effectively replacing synthetic fiber reinforced polymer composites to some extent in applications like domestic, automotive and lower end aerospace parts. The natural fiber reinforced composites are environment friendly, have high strength to weight ratio as well as specific strengths comparable with synthetic glass fiber reinforced composites. In the present work, hybrid epoxy composites were fabricated using calotropis procera and glass fibers as reinforcement by hand lay-up method. The fibre reinforcement in epoxy matrix was maintained at 20 wt%. In 20 wt% reinforcement of fibre, the content of calotropis procera and glass fibre were varied from 5, 10, 15 and 20 wt%. The dry sliding wear test as per ASTM G99 and three body abrasive wear test as per ASTM G65 were conducted to find the tribological properties by varying speed, load, distance and abrasive size. The hybrid composite having 5 wt% calotropis procera and 15 wt% glass fibre showed less wear loss in hybrid composites both in sliding wear test as well as in abrasive wear test which is comparable with 20 wt% glass fibre reinforced epoxy composite which marked very low wear loss. The SEM analysis was carried out to study the worn out surfaces of dry sliding wear test and three body abrasive wear test specimens.


Wear ◽  
2016 ◽  
Vol 360-361 ◽  
pp. 21-28 ◽  
Author(s):  
Sinuhe Hernandez ◽  
Alejandro Leiro ◽  
Manel Rodríguez Ripoll ◽  
Esa Vuorinen ◽  
Karl-Gustaf Sundin ◽  
...  

2018 ◽  
Vol 666 ◽  
pp. 66-75 ◽  
Author(s):  
Reza Gheisari ◽  
Andreas A. Polycarpou

Sign in / Sign up

Export Citation Format

Share Document