Characteristic mode analysis of a circular wideband microstrip antenna

Author(s):  
Bhaskara Rao Perli ◽  
Maheswara Rao A.

A defected dodecagonal microstrip antenna fed through co-planar waveguide and operating in X-band frequency range(8-12 GHz) is proposed. Characteristic mode analysis is employed in examining the impact of defects on the resonant frequencies and return loss. Contrast in return loss for the suggested antenna with and without defects is dealt through Characteristic mode Analysis. Geometrical aspects of the proposed antenna are 40 mm × 35.5 mm × 0.1 mm. Subtrate material used in design is FR4 with a dielectric constant (εr ) = 4.4 and height (h) = 0.1m. CST Microwave Studio is used to simulate antenna parameters and Characteristic mode analysis. A return loss of -49.5dB at center frequency of 10.12GHz is observed with a fractional bandwidth of 47.6%. Gain of the antenna peaks at 4 dBi in the band of operation.


2019 ◽  
Vol 97 ◽  
pp. 201-212
Author(s):  
Bhaskara Rao Perli ◽  
Avula Maheswara Rao

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2516
Author(s):  
Bashar Bahaa Qas Elias ◽  
Ping Jack Soh ◽  
Azremi Abdullah Al-Hadi ◽  
Prayoot Akkaraekthalin ◽  
Guy A. E. Vandenbosch

This work presents the design and optimization of an antenna with defected ground structure (DGS) using characteristic mode analysis (CMA) to enhance bandwidth. This DGS is integrated with a rectangular patch with circular meandered rings (RPCMR) in a wearable format fully using textiles for wireless body area network (WBAN) application. For this integration process, both CMA and the method of moments (MoM) were applied using the same electromagnetic simulation software. This work characterizes and estimates the final shape and dimensions of the DGS using the CMA method, aimed at enhancing antenna bandwidth. The optimization of the dimensions and shape of the DGS is simplified, as the influence of the substrates and excitation is first excluded. This optimizes the required time and resources in the design process, in contrast to the conventional optimization approaches made using full wave “trial and error” simulations on a complete antenna structure. To validate the performance of the antenna on the body, the specific absorption rate is studied. Simulated and measured results indicate that the proposed antenna meets the requirements of wideband on-body operation.


Sign in / Sign up

Export Citation Format

Share Document