Advanced patterns of predictions and cavernous data analytics using quantum machine learning

Author(s):  
G. Arunakranthi ◽  
B. Rajkumar ◽  
V. Chandra Shekhar Rao ◽  
A. Harshavardhan
Author(s):  
Sadaf Qazi ◽  
Muhammad Usman

Background: Immunization is a significant public health intervention to reduce child mortality and morbidity. However, its coverage, in spite of free accessibility, is still very low in developing countries. One of the primary reasons for this low coverage is the lack of analysis and proper utilization of immunization data at various healthcare facilities. Purpose: In this paper, the existing machine learning based data analytics techniques have been reviewed critically to highlight the gaps where this high potential data could be exploited in a meaningful manner. Results: It has been revealed from our review, that the existing approaches use data analytics techniques without considering the complete complexity of Expanded Program on Immunization which includes the maintenance of cold chain systems, proper distribution of vaccine and quality of data captured at various healthcare facilities. Moreover, in developing countries, there is no centralized data repository where all data related to immunization is being gathered to perform analytics at various levels of granularities. Conclusion: We believe that the existing non-centralized immunization data with the right set of machine learning and Artificial Intelligence based techniques will not only improve the vaccination coverage but will also help in predicting the future trends and patterns of its coverage at different geographical locations.


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Haoran Liao ◽  
Ian Convy ◽  
William J. Huggins ◽  
K. Birgitta Whaley

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 831
Author(s):  
Vaneet Aggarwal

Due to the proliferation of applications and services that run over communication networks, ranging from video streaming and data analytics to robotics and augmented reality, tomorrow’s networks will be faced with increasing challenges resulting from the explosive growth of data traffic demand with significantly varying performance requirements [...]


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 460
Author(s):  
Samuel Yen-Chi Chen ◽  
Shinjae Yoo

Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. One of the potential schemes to achieve this property is the federated learning (FL), which consists of several clients or local nodes learning on their own data and a central node to aggregate the models collected from those local nodes. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.


2021 ◽  
Author(s):  
José D. Martín-Guerrero ◽  
Lucas Lamata

Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Lucas Lamata

Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.


Sign in / Sign up

Export Citation Format

Share Document