Temperature and strain rate dependent stress-strain behaviour of nitinol

Author(s):  
Mahesh Kumar Gupta ◽  
Akash Shankhdhar ◽  
Abhinav Kumar ◽  
Anant Vermon ◽  
Aayush Kumar Singh ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2019 ◽  
Vol 2019 (0) ◽  
pp. OS1510
Author(s):  
Junmin SEO ◽  
Hayato TOKUNAGA ◽  
Tomohisa KUMAGAI ◽  
Yasufumi MIURA ◽  
Yunjae KIM

Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging material seem to be promising due to their low weight, structure and production price. Based on the review, the linear low-density polyethylene material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a Constitutive material model to be used in future design by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of the linear low-density polyethylene under static and dynamic loading. The quasi-static measurement is realized in two perpendicular principal directions and is supplemented by a test measurement in the 45 degrees direction, i.e. exactly between the principal directions. The quasi-static stress-strain curves are analyzed as an initial step for dynamic strain rate dependent material behavior. The dynamic response is tested in the drop tower using a spherical impactor hitting the flat material multi-layered specimen at two different energy levels. The strain rate dependent material model is identified by optimizing the static material response obtained in the dynamic experiments. The material model is validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2012 ◽  
Vol 525-526 ◽  
pp. 261-264
Author(s):  
Y.Z. Guo ◽  
X. Chen ◽  
Xi Yun Wang ◽  
S.G. Tan ◽  
Z. Zeng ◽  
...  

The mechanical behavior of two composites, i.e., CF3031/QY8911 (CQ, hereafter in this paper) and EW100A/BA9916 (EB, hereafter in this paper), under dynamic loadings were carefully studied by using split Hopkinson pressure bar (SHPB) system. The results show that compressive strength of CQ increases with increasing strain-rates, while for EB the compressive strength at strain-rate 1500/s is lower then that at 800/s or 400/s. More interestingly, most of the stress strain curves of both of the two composites are not monotonous but exhibit double-peak shape. To identify this unusual phenominon, a high speed photographic system is introduced. The deformation as well as fracture characteristics of the composites under dynamic loadings were captured. The photoes indicate that two different failure mechanisms work during dynamic fracture process. The first one is axial splitting between the fiber and the matrix and the second one is overall shear. The interficial strength between the fiber and matrix, which is also strain rate dependent, determines the fracture modes and the shape of the stress/strain curves.


2008 ◽  
Vol 48 (2) ◽  
pp. 175-194 ◽  
Author(s):  
Warat Kongkitkul ◽  
Fumio Tatsuoka ◽  
Antoine Duttine ◽  
Shohei Kawabe ◽  
Tadao Enomoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document