Effect of wire electrical discharge machining process parameters of Al-6082 hybrid nano metal matrix composites

Author(s):  
Venkatasreenivasula Reddy Perla ◽  
Subbarama Kousik Suraparaju ◽  
Manjunath Thimmarayappa ◽  
Venkata Ramaiah Pathi
2016 ◽  
Vol 23 (2) ◽  
pp. 145-154
Author(s):  
V. Balasubramaniam ◽  
N. Baskar ◽  
Chinnaiyan Sathiya Narayanan

AbstractThis work presents the multiobjective optimization of machining parameters during the electrical discharge machining (EDM) of aluminum (Al)-silicon carbide (SiC) metal matrix composites (MMC). The process parameters considered were current, pulse on-time, dielectric flushing pressure, and SiC particles. A copper rod was used as an electrode. An Al-SiC MMC with Al 6061 as matrix and SiC particles having three different sizes (i.e., 15, 25, and 40 μm) were used as workpieces. The experiments were planned using design of experiments through response surface methodology (RSM). The mathematical models were developed to predict the better performance measures such as the material removal rate (MRR), electrode wear rate (EWR), surface roughness (SR), and cylindricity (CY). The desirability approach in RSM was performed for optimization. It was found that the MRR increases with increasing peak current, pulse on-time, flushing pressure, and particle size. The EDM parameters are to be analyzed for the MRR, EWR, SR, and CY. The best one is proposed for validation.


Author(s):  
Neeraj Sharma ◽  
Tilak Raj ◽  
Kamal Kumar Jangra

NiTi is a shape memory alloy, mostly employed in cardiovascular stents, orthopedic implants, orthodontic wires, micro-electromechanical systems and so on. The effective and net shape machining of NiTi is very critical for excellent response of this material in medical and other applications. The present experimental work on wire electrical discharge machining process identifies the influence of process parameters that affect the cutting rate, dimensional shift and surface roughness while machining of porous nickel–titanium (Ni40Ti60) alloy. Porous Ni40Ti60 alloy was produced in-house using powder metallurgy technique. Response surface methodology–based central composite rotatable design has been used for the planning of experiments on wire electrical discharge machining. Empirical relations have been developed between the process parameters (pulse on-time, pulse off-time, servo voltage and peak current) and response variables. Desirability approach has been used for optimizing the three response variables simultaneously. Confirmation experiments were also performed at the optimized settings and reflect a close agreement between the predicted and experimental values (percentage error varies from −6.13% to +6.85%). Using wire electrical discharge machining, NiTi alloy can be machined easily and successfully in single-cutting operation, but after the first cut in wire electrical discharge machining, a surface projection appears on work surface which is the unmachined material on work surface.


Sign in / Sign up

Export Citation Format

Share Document