Parametric evaluation of B20 blend of mahua biodiesel with nanomaterial additives

Author(s):  
Dev Kumar Sahu ◽  
C.H. Patel ◽  
Sai Krishna Uppara ◽  
Sumit Kanchan ◽  
Rajesh Choudhary
Keyword(s):  
2021 ◽  
Vol 9 (1) ◽  
pp. 436-443
Author(s):  
M.Kannan, R.Balaji, R.T Sarath Babu, Chandrakant B. Shende, Ashish Selokar

The primary objective of this study is to discover the effects of injection timing on performance, emission and combustion characteristics effect of advanced and retarded injection timing of the engine fuelled with mahua oil biodiesel blends. The engine performance, combustion and emission characteristics of the mahua oil biodiesel blends (B20, B40, B60, B80and B100) are investigated in this experimentation without any modification of the diesel engine. At this advanced pressure t he efficiency of engine by means of CO, Unburned HC gases and smoke emissions with higher oxides of nitrogen was observed compared to diesel. The obtained results are compared with a neat diesel and mahua oil biodiesel blends are shown through the graphs. From this study, identifies optimum fuel blend of this work. Thus, the combustion of duration is similar in all variance in pressure. This research paved a way to bio-diesel in mahua oil mixture and draws best outcome in emission less and to maintain eco-friendly environment.  


2019 ◽  
Author(s):  
K. Aditya Sai ◽  
S. Manikanta ◽  
P. Vignesh ◽  
Naveen Kumar ◽  
P. Sai Teja ◽  
...  
Keyword(s):  

2014 ◽  
Vol 984-985 ◽  
pp. 900-906
Author(s):  
L. Saravanakumar ◽  
B.R. Ramesh Bapu ◽  
B. Durga Prasad

The present work investigates the effect of change in combustion chamber geometry on performance and emission characteristics of single cylinder diesel engine fuelled with mahua biodiesel. Since plant oil derived from the mahua tree has high fatty acids, it undergoes esterification followed by transesterification process to reduce its viscosity. Experiments were conducted using a blend of 20% biodiesel (B20) 40% biodiesel (B40) with diesel and compared with diesel by using two types of combustion chamber geometry, explicitly hemispherical and modified hemispherical combustion chamber. Performance parameters such as Brake Thermal Efficiency (BTE), Brake Specific Fuel Consumption (BSFC) and emission parameters like Unburned Hydro Carbon (UBHC), Oxides of Nitrogen (NOx) were studied from the diesel engine with above mentioned configurations. It is obvious that there is considerable improvement in the performance parameter viz, BTE, BSFC and reduction in UBHC emissions by using the modified geometry piston. However, the NOx emission was found to be higher than that of standard configuration. The results obtained from the blend B20 at modified combustion chamber geometry are on par with diesel and hence mahua biodiesel can be suggested as an alternative fuel for Compression Ignition (C.I) engine with modified combustion chamber geometry.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. Savariraj ◽  
T. Ganapathy ◽  
C. G. Saravanan

Biodiesel derived from nonedible feed stocks such as Mahua, Jatropha, Pongamia are reported to be feasible choices for developing countries including India. This paper presents the results of investigation of performance and emissions characteristics of diesel engine using Mahua biodiesel. In this investigation, the blends of varying proportions of Mahua biodiesel and diesel were prepared, analyzed compared with the performance of diesel fuel, and studied using a single cylinder diesel engine. The brake thermal efficiency, brake-specific fuel consumption, exhaust gas temperatures, Co, Hc, No, and smoke emissions were analyzed. The tests showed decrease in the brake thermal efficiencies of the engine as the amount of Mahua biodiesel in the blend increased. The maximum percentage of reduction in BTE (14.3%) was observed for B-100 at full load. The exhaust gas temperature with the blends decreased as the proportion of Mahua increases in the blend. The smoke, Co, and No emissions of the engine were increased with the blends at all loads. However, Hc emissions of Mahua biodiesels were less than that of diesel.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manzoore Elahi M. Soudagar ◽  
N. R. Banapurmath ◽  
Asif Afzal ◽  
Nazia Hossain ◽  
Muhammad Mujtaba Abbas ◽  
...  

Abstract This study deals with an experimental investigation to assess the characteristics of a modified common rail direct injection (CRDI) engine utilizing diesel, Mahua biodiesel, and their blends with synthesized zinc oxide (ZnO) nano additives. The physicochemical properties of diesel, diesel + 30 ppm ZnO nanoparticles (D10030), 20% Mahua biodiesel (MOME20), and Mahua biodiesel (20%) + 30 ppm ZnO nanoparticles (MOME2030) were measured in accordance to the American Society for Testing and Materials standards. The effects of modification of fuel injectors (FI) holes (7-hole FI) and toroidal reentrant combustion chamber (TRCC) piston bowl design on the performance of CRDI using different fuel blends were assessed. For injection timings (IT) and injection opening pressure (IOP) average increase in brake thermal efficiency for fuel blend D10030 and MOME2030 was 9.65% and 16.4%, and 8.83% and 5.06%, respectively. Also, for IT and IOP, the average reductions in brake specific fuel consumption, smoke, carbon monoxide, hydrocarbon and nitrogen oxide emissions for D10030 and MOME2030 were 10.9% and 7.7%, 18.2% and 8.6%, 12.6% and 11.5%, 8.74% and 13.1%, and 5.75% and 7.79%, respectively and 15.5% and 5.06%, 20.33% and 6.20%, 11.12% and 24.8%, 18.32% and 6.29%, and 1.79% and 6.89%, respectively for 7-hole fuel injector and TRCC. The cylinder pressure and heat release rate for D10030 and MOME2030 were enhanced by 6.8% and 17.1%, and 7.35% and 12.28%. The 7-hole fuel injector with the nano fuel blends at an injection timing and pressure of 10° btdc and 900 bar demonstrated the overall improvement of the engine characteristics due to the better air quality for fuel mixing. Similarly, the TRCC cylinder bowl geometry illustrated advanced ignition due to an improved swirl and turbulence. Also, the engine test results demonstrated that 30 ppm of ZnO nanoparticles in Mahua biodiesel (MOME2030) and diesel (D10030) with diethyl ether resulted overall enhancement of CRDI engine characteristics.


Sign in / Sign up

Export Citation Format

Share Document