scholarly journals Experimental Investigation of Performance and Emission Characteristics of Mahua Biodiesel in Diesel Engine

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. Savariraj ◽  
T. Ganapathy ◽  
C. G. Saravanan

Biodiesel derived from nonedible feed stocks such as Mahua, Jatropha, Pongamia are reported to be feasible choices for developing countries including India. This paper presents the results of investigation of performance and emissions characteristics of diesel engine using Mahua biodiesel. In this investigation, the blends of varying proportions of Mahua biodiesel and diesel were prepared, analyzed compared with the performance of diesel fuel, and studied using a single cylinder diesel engine. The brake thermal efficiency, brake-specific fuel consumption, exhaust gas temperatures, Co, Hc, No, and smoke emissions were analyzed. The tests showed decrease in the brake thermal efficiencies of the engine as the amount of Mahua biodiesel in the blend increased. The maximum percentage of reduction in BTE (14.3%) was observed for B-100 at full load. The exhaust gas temperature with the blends decreased as the proportion of Mahua increases in the blend. The smoke, Co, and No emissions of the engine were increased with the blends at all loads. However, Hc emissions of Mahua biodiesels were less than that of diesel.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amar Pandhare ◽  
Atul Padalkar

This paper presents the performance of biodiesel blends in a single-cylinder water-cooled diesel engine. All experiments were carried out at constant speed 1500 rpm and the biodiesel blends were varied from B10 to B100. The engine was equipped with variable compressions ratio (VCR) mechanism. For 100% Jatropha biodiesel, the maximum fuel consumption was 15% higher than that of diesel fuel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel at various load conditions. The increase in specific fuel consumption ranged from 2.75% to 15% for B10 to B100 fuels. The exhaust gas temperature increased with increased biodiesel blend. The highest exhaust gas temperature observed was 430°C with biodiesel for load conditions 1.5 kW, 2.5 kW, and 3.5 kW, where as for diesel the maximum exhaust gas temperature was 440°C. The CO2emission from the biodiesel fuelled engine was higher by 25% than diesel fuel at full load. The CO emissions were lower with Jatropha by 15%, 13%, and 13% at 1.5 kW, 2.5 kW, and 3.5 kW load conditions, respectively. TheNOxemissions were higher by 16%, 19%, and 20% at 1.5 kW, 2.5 kW, and 3.5 kW than that of the diesel, respectively.


Author(s):  
Jaspreet Hira ◽  
Basant Singh Sikarwar ◽  
Rohit Sharma ◽  
Vikas Kumar ◽  
Prakhar Sharma

In this research work, a surge tank is developed and utilised in the diesel engine for controlling the NOX emission. This surge tank acts as a damper for fluctuations caused by exhaust gases and also an intercooler in reducing the exhaust gas temperature into the diesel engine intake manifold. With the utilisation of the surge tank, the NOX emission level has been reduced to approximately 50%. The developed surge tank is proved to be effective in maintaining the circulation of water at appropriate temperatures. A trade-off has been established between the engine performance parameters including the brake thermal efficiency, brake specific fuel consumption, exhaust gas temperature and all emission parameters including HC and CO.


Author(s):  
Siddavatam Naresh Kumar Reddy ◽  
Mohmad Marouf Wani

AbstractThe study aims to examine the effects of palm biodiesel blended with additives in the compression ignition (CI) engine. Biodiesel as fuel was limited by challenges such as lower calorific value (CV) and higher viscosity while increasing brake specific fuel consumption (BSFC) and nitrogen oxides (NOx) emissions. Nanoparticles and antioxidant additives added to biodiesel play an essential role in avoiding the hindrances of biodiesel. The antioxidants combined with biodiesel reduced NOx emissions by eliminating decomposing peroxides, free radicals, and preventing free radicals' chain reaction. The Significant characteristics of nanoparticles are high CV, high thermal conductivity, and higher surface to volume ratio. These characteristics are used to improve the CI engine's performance and emissions by using nanoparticles blended with biodiesel. Five different test blends of Diesel, B20, B20TO, B20AO, and B20AOTO were prepared. The result showed high brake thermal efficiency (BTHE) and decreased BSFC, exhaust gas temperature (EGT), hydrocarbons (HC), NOx, and HC emissions by using the B20AOTO fuel blend contrasted with other biodiesel blends.


2020 ◽  
Vol 10 (2) ◽  
pp. 183-190
Author(s):  
Viet Dung Tran ◽  
Anh Tuan Le ◽  
Anh Tuan Hoang

As a rule, the highest permissible sulfur content in the marine fuel must drop below 0.5% from 1 January 2020 for global fleets. As such, ships operating in emission control areas must use low sulfur or non-sulfur fuel to limit sulfur emissions as a source of acid rain. However, that fact has revealed two challenges for the operating fleet: the very high cost of ultra-low sulfur diesel (ULSD) and the installation of the fuel conversion system and the ULSD cooling system. Therefore, a solution that blends ULSD and biodiesel (BO) into a homogeneous fuel with properties equivalent to that of mineral fuels is considered to be significantly effective. In the current work, an advanced ultrasonic energy blending technology has been applied to assist in the production of homogeneous ULSD-BO blends (ULSD, B10, B20, B30, and B50 with blends of coconut oil methyl ester with ULSD of 10%, 20%, 30% and 50% by volume) which is supplied to a small marine diesel engine on a dynamo test bench to evaluate the power and torque characteristics, also to consider the effect of BO fuel on specific fuel consumption exhaust gas temperature and brake thermal efficiency. The use of the ultrasonic mixing system has yielded impressive results for the homogeneous blend of ULSD and BO, which has contributed to improved combustion quality and thermal efficiency. The results have shown that the power, torque, and the exhaust gas temperature, decrease by approximately 9%, 2%, and 4% respectively with regarding the increase of the blended biodiesel rate while the specific fuel consumption and brake thermal efficiency tends to increase of around 6% and 11% with those blending ratios.


2014 ◽  
Vol 493 ◽  
pp. 273-280 ◽  
Author(s):  
Bambang Sudarmanta ◽  
Sudjud Darsopuspito ◽  
Djoko Sungkono

Performance and emissions characteristics from port injection SINJAI engine 650 cc operating on bioethanol-gasoline blended fuels of 0%, 5%, 10%, 15% and 20% were investigated on water brake dynamometers with power capacity 120 hp. The properties of bioethanol were measured based on American Society for Testing Materials (ASTM) standards. Fuel consumption was measured by the time fuel consumption per 25 cc of fuel in a measuring glass whereas combustion air consumption was measured using an air flow meter. The emission parameters, exhaust gas temperature and air fuel ratio were measured using STARGAS exhaust gas analyzer. The increase of bioethanol content will increases the engine performance and reduces pollutan emission. The highest engine performance produced by E15 blended fuel with increased torsi, mean effective pressure and power output of 10,27 %, thermal efficiency 1,8% but specific fuel consumption increased approximatelly 12,42%. This condition occurs at engine speed 3000 - 3500 rpm. While the emission CO and HC emissions decreased significantly as a result of the leaning effect caused by the bioethanol addition. In this study, it was found that using bioetanol-gasoline blended fuels , the CO and HC emissions would be reduced appoximatelly by 55 and 32% Respectively.


2013 ◽  
Vol 393 ◽  
pp. 344-349 ◽  
Author(s):  
Syarifah Yunus ◽  
Amirul Abd Rashid ◽  
Syazuan Abdul Latip ◽  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
...  

This paper deals with performances and emissions of Jatropha-Palm blended biodiesel as fuel for 4-stroke single vertical cylinder diesel engine. Five fuel samples were tested; i) Diesel fuel supplied by Petronas (PDF); ii) 5% of blended Jatropha-Palm biodiesel and 95% Diesel fuel (B5JPB); iii) 10% of blended Jatropha-Palm biodiesel and 90% Diesel fuel (B10JPB); iv) 15% of blended Jatropha-Palm biodiesel and 85% Diesel fuel (B15JPB); and v) 20% of blended Jatropha-Palm biodiesel and 80% Diesel fuel (B20JPB). Engine performances (specific fuel consumption, brake thermal efficiency) and emissions (exhaust gas temperature and Nox emission) were analyzed and have been discussed in this study. All tests were carried out at varied load conditions which were 0.13, 0.15, 0.17, 0.19 and 0.21 kW. The results revealed that B10JPB blended showed better engine performances compared to its other blends and comparable performances compared to PDF. Comparable Nox emitted of all Jatropha-Palm fuel blended biodiesel fuel sample has been demonstrated to those PDF.


2012 ◽  
Vol 505 ◽  
pp. 458-462 ◽  
Author(s):  
T. Senthil Kumar ◽  
M. Senthil Kumar ◽  
P. Senthil Kumar

Current demands on renewable alternative fuel, biodiesel claims considerable significance. Biodiesel can be produced from any type of vegetable oils but yielding is determined by its free fatty acid (FFA) content. The alkaline-catalyzed esterification is not suitable for the unrefined vegetable oil which has high acid content. Hence, two-step esterification process is used to derive the kapok methyl ester due to its high FFA value. The biodiesel production in the two step process consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterificatin. In this study, experimental investigations are carried out in compression ignition engine to analyze the properties, performance and emissions characteristics of different blends of kapok methyl ester and compared with diesel. The exhaust gas temperature and specific fuel consumption are increased with increase of load and amount of biodiesel. The CO2 emission is slightly higher and NOx emission is about 22 percentage higher than that of the diesel at all the loads of engine. However, lower biodiesel blends showed reasonable efficiencies, lower value of smoke, CO and HC emissions.


2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) force automotive manufacturers to equip DPF (diesel particulate filter) on diesel cars. Generally, post injection is used as a method to regenerate DPF. However, it is known that post injection deteriorates specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration becomes one of key technologies for diesel powertrain equipped with a DPF. This paper presents correlations between fuel injection strategy and exhaust gas temperature for DPF regeneration. Experimental apparatus consists of a single cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, post injection timing covers from 40 deg aTDC to 110 deg aTDC and double post injection was considered. In addition, effects of injection pressures were investigated. The engine load was varied from low-load to mid-load and fuel amount of post injection was increased up to 10mg/stk. Oil dilution during fuel injection and combustion processes were estimated by diesel loss measured by comparing two global equivalences ratios; one is measured from Lambda sensor installed at exhaust port, the other one is estimated from intake air mass and injected fuel mass. In the present study, the differences in global equivalence ratios were mainly caused from oil dilution during post injection. The experimental results of the present study suggest an optimal engine operating conditions including fuel injection strategy to get appropriate exhaust gas temperature for DPF regeneration. Experimental results of exhaust gas temperature distributions for various engine operating conditions were summarized. In addition, it was revealed that amounts of oil dilution were reduced by splitting post injection (i.e., double post injection). Effects of injection pressure on exhaust gas temperature were dependent on combustion phasing and injection strategies.


2018 ◽  
Vol 20 (1) ◽  
pp. 141-154 ◽  
Author(s):  
P Maniatis ◽  
U Wagner ◽  
T Koch

A manipulation of the charge exchange allows controlling the amount of residual gas during engine warm-up. The residual gas during the warm-up phase leads to an increase of the exhaust gas temperature and supports to reach the exhaust after-treatment system operating temperature faster. In addition, the warm residual gas increases the combustion chamber temperature, which reduces the HC and CO emissions. However, fuel consumption increases. For that reason, such heating measures should be the best compromise of both, exhaust gas temperature increase and engine efficiency, in order to provide efficient heating strategies for passenger car diesel engines. Therefore, simulative and experimental investigations are carried out at the Institute of Internal Combustion Engines of the Karlsruhe Institute of Technology to establish a reliable cam design methodology. For the experimental investigations, a modern research single-cylinder diesel engine was set up on a test bench. In addition, a one-dimensional simulation model of the experimental setup was created in order to simulate characteristics of valve lift curves and to investigate their effects on the exhaust gas temperature and the exhaust gas enthalpy flow. These simulations were based on design of experiments (DoE), so that all characteristics can be used sustainably for modeling and explaining their influences on the engine operation. This methodology allows numerically investigating promising configurations and deriving cam contours which are manufactured for testing. To assess the potential of these individual configurations, the results obtained were compared with each other as well as with the series configuration. Results show that the combination of DoE and one-dimensional simulation for the design of camshaft contours is well suited which was also validated with experimental results. Furthermore, the potential of residual gas retention by favorable configurations with a second event already revealed in various publications could be confirmed with respect to exhaust gas temperature increase and engine efficiency.


Sign in / Sign up

Export Citation Format

Share Document